Selecting the correct procedure for determining limits is a crucial skill in AP Calculus. This section focuses on reinforcing this ability through a series of exercises. These problems will cover a wide range of functions and limit situations, challenging students to apply various strategies effectively. The aim is to enhance critical thinking and understanding of limit evaluation through practical application.
💡Exercise 1: Direct Substitution
Problem Statement:
Evaluate the limit: limx→2(3x−6)
🎯 Solution:
$ \begin{aligned} &\lim _{x \rightarrow 2} (3x - 6) \\
&= 3(2) - 6 \\
&= 0 \end{aligned}
<p></p><h2id="exercise−2−factoring">💡<strong>Exercise2:Factoring</strong></h2><h3><strong>ProblemStatement:</strong></h3><p>Evaluatethelimit:\lim _{x \rightarrow 3} \dfrac{x^2 - 9}{x - 3}
</p><p></p><h3>🎯<strong>Solution:</strong></h3><p></p>\begin{aligned} &\lim_{x \rightarrow 3} \frac{x^2 - 9}{x - 3} \\
&= \lim_{x \rightarrow 3} \frac{(x + 3)(x - 3)}{x - 3} \\
&= \lim _{x \rightarrow 3} (x + 3) \\
&= 6 \end{aligned}
<p></p><h2id="exercise−3−rationalization">💡<strong>Exercise3:Rationalization</strong></h2><h3><strong>ProblemStatement:</strong></h3><p>Evaluatethelimit:\lim _{x \rightarrow 1} \dfrac{\sqrt{x} - 1}{x - 1}
</p><h3></h3><h3>🎯<strong>Solution:</strong></h3><p></p>\begin{aligned} &\lim_{x \rightarrow 1} \frac{\sqrt{x} - 1}{x - 1} \\
&= \lim_{x \rightarrow 1} \frac{(\sqrt{x} - 1)(\sqrt{x} + 1)}{(x - 1)(\sqrt{x} + 1)} \\ &= \lim_{x \rightarrow 1} \frac{x - 1}{(x - 1)(\sqrt{x} + 1)} \\
&= \lim_{x \rightarrow 1} \frac{1}{\sqrt{x} + 1} \\
&= \frac{1}{2} \end{aligned}
<p></p><h2id="exercise−4−using−limit−theorems">💡<strong>Exercise4:UsingLimitTheorems</strong></h2><h3><strong>ProblemStatement:</strong></h3><p>Evaluatethelimit:\lim _{x \rightarrow -2} \dfrac{4x^2 - x - 6}{2 - x}
</p><p></p><h3>🎯<strong>Solution:</strong></h3><p></p>\begin{aligned} &\lim_{x \rightarrow -2} \frac{4x^2 - x - 6}{2 - x} \\
&= \frac{\lim {x \rightarrow -2}(4x^2 - x - 6)}{\lim _{x \rightarrow -2}(2 - x)} \\ &= \frac{4(-2)^2 - (-2) - 6}{2 - (-2)} \\
&= \frac{16 + 2 - 6}{4} \\
&= \frac{12}{4} \\
&= 3 \end{aligned}
<p></p><h2id="exercise−5−algebraic−manipulation">💡<strong>Exercise5:AlgebraicManipulation</strong></h2><h3><strong>ProblemStatement:</strong></h3><p>Evaluatethelimit:\lim _{x \rightarrow 0} \dfrac{x^3 - 8x}{x^2}
</p><p></p><h3>🎯<strong>Solution:</strong></h3><p></p>\begin{aligned} &\lim_{x \rightarrow 0} \frac{x^3 - 8x}{x^2} \\
&= \lim_{x \rightarrow 0} \frac{x(x^2 - 8)}{x^2} \\
&= \lim _{x \rightarrow 0} (x - 8) \\
&= -8 \end{aligned}
<p></p><h2id="exercise−6−handling−indeterminate−forms">💡<strong>Exercise6:HandlingIndeterminateForms</strong></h2><h3><strong>ProblemStatement:</strong></h3><p>EvaluatethelimitusingL′Ho^pital′sRule:\lim _{x \rightarrow 0} \dfrac{\sin(x)}{x}
</p><p></p><h3>🎯<strong>Solution:</strong></h3><p></p>\begin{aligned} &\lim_{x \rightarrow 0} \frac{\sin(x)}{x} \\
&= \lim_{x \rightarrow 0} \frac{\cos(x)}{1} \\
&= \cos(0) \\
&= 1 \end{aligned}
<p></p><h2id="guided−practice">📚<strong>GuidedPractice</strong></h2><p>Theseexercisesaredesignedtoprovideacomprehensiveapproachtoselectingstrategiesforlimitevaluation.Whilesomeproblemsmayseemstraightforward,othersrequireadeeperanalysisofthefunctiontodeterminethemosteffectivestrategy.AlwaysconsidersimplifyingtheexpressionorapplyingL′Ho^pital′sRuleforindeterminateforms.Engagewiththeseexercisesactively,attemptingtoforeseethemethodthatwillleadyoumostdirectlytothesolution.Thisforesightandstrategyselectionarekeyskillsinmasteringcalculus.</p><p></p><h2id="exercise−7−complex−fractions">🔍<strong>Exercise7:ComplexFractions</strong></h2><h3><strong>ProblemStatement:</strong></h3><p>Evaluatethelimit:\lim _{x \rightarrow 4} \dfrac{2x^2 + 3x - 14}{x - 2}
</p><p></p><h3>🎯<strong>Solution:</strong></h3><p></p>\begin{aligned} &\lim_{x \rightarrow 4} \frac{2x^2 + 3x - 14}{x - 2} \\
&= \frac{\lim_{x \rightarrow 4}(2x^2 + 3x - 14)}{\lim _{x \rightarrow 4}(x - 2)} \\
&= \frac{2(4)^2 + 3(4) - 14}{4 - 2} \\
&= \frac{32 + 12 - 14}{2} \\
&= \frac{30}{2} \\ &= 15 \end{aligned}
<p></p><h2id="exercise−8−applying−multiple−strategies">🔍<strong>Exercise8:ApplyingMultipleStrategies</strong></h2><h3><strong>ProblemStatement:</strong></h3><p>Evaluatethelimit:\lim _{x \rightarrow 2} \dfrac{x^4 - 16}{x^2 - 4}
</p><p></p><h3>🎯<strong>Solution:</strong></h3><p></p>\begin{aligned} &\lim_{x \rightarrow 2} \frac{x^4 - 16}{x^2 - 4} \\
&= \lim_{x \rightarrow 2} \frac{(x^2 + 4)(x^2 - 4)}{x^2 - 4} \\
&= \lim _{x \rightarrow 2} (x^2 + 4) \\
&= 2^2 + 4 \\
&= 8 \end{aligned}
<p></p><h2id="exercise−9−trigonometric−limits">🔍<strong>Exercise9:TrigonometricLimits</strong></h2><h3><strong>ProblemStatement:</strong></h3><p>Evaluatethelimit:\lim _{x \rightarrow 0} \dfrac{1 - \cos(x)}{x^2}
</p><p></p><h3>🎯<strong>Solution:</strong></h3><p>UsingL′Ho^pital′sRuletwiceduetotheindeterminateform\dfrac{0}{0}
:</p><p></p>\begin{aligned} &\lim_{x \rightarrow 0} \frac{1 - \cos(x)}{x^2} \\
&= \lim_{x \rightarrow 0} \frac{\sin(x)}{2x} \\
&= \lim _{x \rightarrow 0} \frac{\cos(x)}{2} \\
&= \frac{1}{2} \end{aligned}
<p></p><h2id="exercise−10−infinite−limits">🔍<strong>Exercise10:InfiniteLimits</strong></h2><h3><strong>ProblemStatement:</strong></h3><p>Evaluatethelimit:\lim _{x \rightarrow 0} \dfrac{3}{x^2}
</p><p></p><h3>🎯<strong>Solution:</strong></h3><p></p>\begin{aligned} &\lim _{x \rightarrow 0} \frac{3}{x^2} \\
&= \infty \end{aligned}
<p></p><p>Thissignifiesthefunctionapproachesinfinityasx$ approaches 0.