This section presents a series of case studies illustrating the strategic approach to determining limits in calculus. Each case exemplifies a unique scenario, requiring a specific strategy for solution, such as factorization, direct substitution, or algebraic manipulation. Through detailed examples, we'll explore the thought process and mathematical steps necessary to navigate complex limit problems effectively.
Example 1: Evaluate limx→0xsin(x).
- Strategy: Direct application of L'Hôpital's Rule due to the indeterminate form 00.
$\begin{aligned} &\lim_{x \rightarrow 0} \frac{\sin(x)}{x} \\
=& \lim_{x \rightarrow 0} \frac{d}{dx} (\sin(x)) / \frac{d}{dx} (x) \\
=& \lim_{x \rightarrow 0} \frac{\cos(x)}{1} \\
=& \cos(0) \\
=& 1 \end{aligned}
<p></p><p><strong>Example2:</strong>Evaluate\lim _{x \rightarrow 0} \dfrac{e^x - 1}{x}.
</p><ul><li><strong>Strategy:</strong>UtilizeL′Ho^pital′sRuleforindeterminateform\frac{0}{0}
.</li></ul><p></p>\begin{aligned} &\lim {x \rightarrow 0} \frac{e^x - 1}{x} \\
=& \lim {x \rightarrow 0} \frac{d}{dx} (e^x - 1) / \frac{d}{dx} (x) \\
=& \lim _{x \rightarrow 0} \frac{e^x}{1} \\
=& e^0 \\
=& 1 \end{aligned}
<h2id="factorization">📚<strong>Factorization</strong></h2><p><strong>Example3:</strong>Evaluate\lim _{x \rightarrow 2} \dfrac{x^2 - 4}{x - 2}.
</p><ul><li><strong>Strategy:</strong>Factorizethenumeratortosimplifytheexpressionbeforeapplyingdirectsubstitution.</li></ul><p></p>\begin{aligned} &\lim_{x \rightarrow 2} \frac{x^2 - 4}{x - 2} \\
=& \lim_{x \rightarrow 2} \frac{(x + 2)(x - 2)}{x - 2} \\
=& \lim _{x \rightarrow 2} (x + 2) \\
=& 4 \end{aligned}
<h2id="rationalization">📚<strong>Rationalization</strong></h2><p><strong>Example4:</strong>Evaluate\lim _{x \rightarrow 0} \dfrac{\sqrt{x + 4} - 2}{x}.
</p><ul><li><strong>Strategy:</strong>RationalizethenumeratortoeliminatethesquarerootbeforeapplyingL′Ho^pital′sRule.</li></ul><p></p>\begin{aligned} &\lim_{x \rightarrow 0} \frac{\sqrt{x + 4} - 2}{x} \\
=& \lim_{x \rightarrow 0} \frac{(\sqrt{x + 4} - 2)(\sqrt{x + 4} + 2)}{x(\sqrt{x + 4} + 2)} \\
=& \lim_{x \rightarrow 0} \frac{x + 4 - 4}{x(\sqrt{x + 4} + 2)} \\
=& \lim_{x \rightarrow 0} \frac{x}{x(\sqrt{x + 4} + 2)} \\
=& \lim_{x \rightarrow 0} \frac{1}{\sqrt{x + 4} + 2} \\
=& \frac{1}{4} \end{aligned}
<h2id="algebraic−manipulation">📚<strong>AlgebraicManipulation</strong></h2><p><strong>Example5:</strong>Evaluate\lim _{x \rightarrow \infty} \dfrac{3x^2 + 7x}{2x^2 - 5x + 9}.
</p><ul><li><strong>Strategy:</strong>Divideeverytermby(x2)tosimplifytheexpressionfordirectsubstitutionas(x)approachesinfinity.</li></ul><p></p>\begin{aligned} &\lim_{x \rightarrow \infty} \frac{3x^2 + 7x}{2x^2 - 5x + 9} \\
=& \lim_{x \rightarrow \infty} \frac{3 + \frac{7}{x}}{2 - \frac{5}{x} + \frac{9}{x^2}} \\
=& \frac{3 + 0}{2 - 0 + 0} \\
=& \frac{3}{2} \end{aligned}
<p></p><p><strong>Example6:</strong>Evaluate\lim _{x \rightarrow-\infty} \dfrac{4x^3 - x + 2}{x^3 + 3x^2 - x}
</p><ul><li><strong>Strategy:</strong>Divideeverytermbyx^3
andsimplifytheexpressionfordirectsubstitutionasx
approachesnegativeinfinity.</li></ul><p></p>\begin{aligned} &\lim_{x \rightarrow -\infty} \frac{4x^3 - x + 2}{x^3 + 3x^2 - x} \\
=& \lim_{x \rightarrow -\infty} \frac{4 - \frac{1}{x^2} + \frac{2}{x^3}}{1 + \frac{3}{x} - \frac{1}{x^2}} \\
=& \frac{4 - 0 + 0}{1 + 0 - 0} \\
=& 4 \end{aligned}
<p></p><p>Theseexamplesdemonstratetheimportanceofselectingthemostappropriatemethodforevaluatinglimits.Whetherthroughdirectsubstitution,factorization,rationalization,theuseoflimittheorems,oralgebraicmanipulation,understandingthenuancesofeachtechniqueallowsforefficientandaccuratelimitdetermination.Throughpracticeandapplicationofthesestrategiesacrossvariousfunctionsandscenarios,studentscandeveloparobusttoolkitforaddressingthewiderangeoflimitproblemsencounteredincalculus.</p><h2id="practice−questions">✏R◯<strong>PracticeQuestions</strong></h2><p>Herearesomepracticequestionsdesignedtotestyourunderstandingofthestrategiesfordetermininglimits.ThesequestionsmirrorthecomplexityandstyleofthosefoundontheAPCalculusexam.</p><h3>📝<strong>Question1</strong></h3><p>Evaluate\lim _{x \rightarrow 3} \dfrac{x^3 - 27}{x^2 - 9}
.</p><p></p><h3>📝<strong>Question2</strong></h3><p>Evaluate\lim _{x \rightarrow 0} \dfrac{\cos(x) - 1}{x}
.</p><p></p><h3>📝<strong>Question3</strong></h3><p>Evaluate\lim _{x \rightarrow 2} \dfrac{\sqrt{4x + 1} - 3}{x - 2}
.</p><p></p><p></p><h2id="solutions−to−practice−questions">✅<strong>SolutionstoPracticeQuestions</strong></h2><h3>🧩<strong>SolutiontoQuestion1</strong></h3><ul><li><strong>Strategy:</strong>Factorizethenumeratorandthedenominatorandthensimplify.</li></ul><p></p>\begin{aligned} &\lim_{x \rightarrow 3} \frac{x^3 - 27}{x^2 - 9} \\
=& \lim_{x \rightarrow 3} \frac{(x - 3)(x^2 + 3x + 9)}{(x - 3)(x + 3)} \\
=& \lim _{x \rightarrow 3} \frac{x^2 + 3x + 9}{x + 3} \\
=& \frac{3^2 + 3(3) + 9}{3 + 3} \\
=& \frac{9 + 9 + 9}{6} \\
=& \frac{27}{6} \\
=& 4.5 \end{aligned}
<p></p><h3>🧩<strong>SolutiontoQuestion2</strong></h3><ul><li><strong>Strategy:</strong>ApplyL′Ho^pital′sRuleduetotheindeterminateform\dfrac{0}{0}
.</li></ul><p></p>\begin{aligned} &\lim_{x \rightarrow 0} \frac{\cos(x) - 1}{x} \\
=& \lim_{x \rightarrow 0} \frac{d}{dx} (\cos(x) - 1) / \frac{d}{dx} (x) \\
=& \lim _{x \rightarrow 0} \frac{-\sin(x)}{1} \\
=& -\sin(0) \\
=& 0 \end{aligned}
<p></p><h3>🧩<strong>SolutiontoQuestion3</strong></h3><ul><li><strong>Strategy:</strong>Rationalizethenumeratortofacilitatesimplification.</li></ul><p></p>\begin{aligned} &\lim_{x \rightarrow 2} \frac{\sqrt{4x + 1} - 3}{x - 2} \\
=& \lim_{x \rightarrow 2} \frac{(\sqrt{4x + 1} - 3)(\sqrt{4x + 1} + 3)}{(x - 2)(\sqrt{4x + 1} + 3)} \\
=& \lim_{x \rightarrow 2} \frac{4x + 1 - 9}{(x - 2)(\sqrt{4x + 1} + 3)} \\
=& \lim_{x \rightarrow 2} \frac{4(x - 2)}{(x - 2)(\sqrt{4x + 1} + 3)} \\
=& \lim_{x \rightarrow 2} \frac{4}{\sqrt{4x + 1} + 3} \\
=& \frac{4}{\sqrt{4(2) + 1} + 3} \\
=& \frac{4}{\sqrt{9} + 3} \\
=& \frac{4}{3 + 3} \\
=& \frac{2}{3} \end{aligned}$