In exploring the concept of limits within calculus, it's critical to understand that not all functions have limits at every point. This section delves into specific scenarios where limits do not exist: when a function becomes unbounded, oscillates without approaching a specific value, or behaves differently when approached from the left compared to the right. Through mathematical equations and graphical examples, we aim to illustrate these conditions, reinforcing the understanding that limits are an essential yet sometimes elusive aspect of function analysis.
Unbounded Behavior
- Definition: A limit does not exist if the function approaches infinity or negative infinity as x approaches a certain value.
- Example:
limx→0x21$ \begin{aligned}
&\text{As } x \to 0^+, \frac{1}{x^2} \to \infty \\
&\text{As } x \to 0^-, \frac{1}{x^2} \to \infty
\end{aligned}
<p></p><ul><li><strong>Conclusion</strong>:Sincethefunctionbecomesinfinitelylargeasx
approaches0,thelimitdoesnotexist.</li></ul><h2id="oscillating−behavior"><strong>OscillatingBehavior</strong></h2><ul><li><strong>Definition</strong>:Alimitdoesnotexistifthefunctionoscillatesbetweenvaluesas(x)approachesacertainpointwithoutsettlingonasinglevalue.</li><li><strong>Example</strong>:</li></ul>\lim_{x \to 0} \sin\left(\frac{1}{x}\right)
<p></p><ul><li><strong>Calculation</strong>:</li></ul> \begin{aligned}
&\text{As } x \to 0, \sin\left(\frac{1}{x}\right) \text{ oscillates between } -1 \text{ and } 1 \\
&\text{No single limit value can be identified.}
\end{aligned}
<p></p><ul><li><strong>Conclusion</strong>:Theoscillatingnatureof\sin\left(\frac{1}{x}\right)
nearx = 0
meansthelimitdoesnotexist.</li></ul><h2id="behavior−differing−by−direction"><strong>BehaviorDifferingbyDirection</strong></h2><ul><li><strong>Definition</strong>:Alimitdoesnotexistiftheleft−handlimitandright−handlimitasx
approachesacertainvaluearenotequal.</li><li><strong>Example</strong>:</li></ul>\lim_{x \to 0} \dfrac{|x|}{x}
<p></p><ul><li><strong>Calculation</strong>:</li></ul> \begin{aligned}
&\lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} \frac{x}{x} = 1 \\
&\lim_{x \to 0^-} \frac{|x|}{x} = \lim_{x \to 0^-} \frac{-x}{x} = -1
\end{aligned}
<p></p><ul><li><strong>Conclusion</strong>:Since\lim{x \to 0^+} \neq \lim{x \to 0^-}
,thelimitasx \to 0
doesnotexist.</li></ul><h2id="graphical−examples"><strong>GraphicalExamples</strong></h2><p><strong>Example1</strong>:Graphofy = \dfrac{1}{x^2}
.</p><imgsrc="https://tutorchase−production.s3.eu−west−2.amazonaws.com/e528fe8a−1dc0−4288−abce−1ff667ae1bf6−file.png"alt="Graphofy=1/x2"style="width:500px;height:441px"width="500"height="441"><ul><li><strong>Features</strong>:Thegraphshowsthatasx
approaches0frombothsides,y
becomesinfinitelylarge,indicatinganunboundedbehavior.</li></ul><p></p><p><strong>Example2</strong>:Graphofy = \sin\left(\dfrac{1}{x}\right)
.</p><imgsrc="https://tutorchase−production.s3.eu−west−2.amazonaws.com/e6c92e81−ab35−406a−b800−ddd06b8929cc−file.png"alt="Graphofy=sin(1/x)"style="width:600px;height:453px"width="600"height="453"><ul><li><strong>Features</strong>:Asx
approaches0,thegraphoscillatesinfinitelybetween−1and1withoutapproachingaspecificvalue,illustratingoscillatingbehavior.</li></ul><p></p><p><strong>Example3</strong>:Graphofy = \dfrac{|x|}{x}
.</p><imgsrc="https://tutorchase−production.s3.eu−west−2.amazonaws.com/0db29cdb−5fd3−4b18−b639−9b41f115edd2−file.png"alt="Graphofy=∣x∣/x"style="width:600px;height:453px"width="600"height="453"><ul><li><strong>Features</strong>:Thegraphillustratesajumpdiscontinuityatx = 0
,wheretheleft−handlimitis−1andtheright−handlimitis1,demonstratingbehaviordifferingbydirection.</li></ul><h2id="practice−questions">PracticeQuestions</h2><h3>Question1</h3><p>Determineifthelimitexistsforf(x) = \dfrac{2x}{|x|}
asx
approaches0.</p><h3>Question2</h3><p>Evaluatethelimitofg(x) = x \sin\left(\dfrac{1}{x}\right)
asx
approaches0.</p><h3>Question3</h3><p>Investigatetheexistenceofthelimitforh(x) = \dfrac{1}{x^2 - 1}
asx
approaches1.</p><h3>Question4</h3><p>Determinethelimitoff(x) = \cos\left(\pi x\right)
asx
approaches2fromtheleftandtheright.</p><h2id="solutions−to−practice−questions">SolutionstoPracticeQuestions</h2><h3>SolutiontoQuestion1</h3><ul><li><strong>Left−handLimit</strong>:</li></ul>\lim{x \to 0^-} \frac{2x}{|x|} = \lim{x \to 0^-} \frac{2x}{-x} = -2
<ul><li><strong>Right−handLimit</strong>:</li></ul>\lim{x \to 0^+} \frac{2x}{|x|} = \lim{x \to 0^+} \frac{2x}{x} = 2
<ul><li><strong>Conclusion</strong>:Sincetheleft−handlimit-2
isnotequaltotheright−handlimit2
,thelimitdoesnotexist.</li></ul><p></p><h3>SolutiontoQuestion2</h3><ul><li><strong>Approach</strong>:UtilizingtheSqueezeTheorem.</li><li><strong>Calculation</strong>:Since\sin\left(\frac{1}{x}\right)
oscillatesbetween-1
and1
asx
approaches0,andx
multipliesthesinefunction,weevaluatethebehavioraround0:-x \leq x \sin\left(\frac{1}{x}\right) \leq x
,Asx \to 0
bothbounds-x
andx
approach0.</li><li><strong>Conclusion</strong>:BytheSqueezeTheorem,sincebothboundsgoto0,thelimitofg(x)
asx \to 0
alsogoesto0.Thelimitexistsandis0.</li></ul><p></p><h3>SolutiontoQuestion3</h3><ul><li><strong>Calculation</strong>:</li></ul>\lim_{x \to 1} \dfrac{1}{x^2 - 1}
<p></p><p>Observingthatx^2 - 1 = (x+1)(x-1)
,asx
approaches1,thedenominatorapproaches0,whichsuggeststhefunction′svaluebecomesinfinitelylargeorsmall.</p><ul><li><strong>Conclusion</strong>:Thefunctionh(x)
becomesunboundednearx = 1
,thusthelimitdoesnotexist.</li></ul><p></p><h3>SolutiontoQuestion4</h3><ul><li><strong>Left−handLimit</strong>:</li></ul>\lim_{x \to 2^-} \cos\left(\pi x\right) = \cos(2\pi) = 1
<ul><li><strong>Right−handLimit</strong>:</li></ul>\lim_{x \to 2^+} \cos\left(\pi x\right) = \cos(2\pi) = 1
<ul><li><strong>Conclusion</strong>:Thelimitasx$ approaches 2 exists and is 1, as both the left-hand and right-hand limits are equal, confirming the existence and value of the limit.