One-sided limits are crucial in understanding the behavior of functions as they approach a specific point from either the left or the right side. This concept is foundational for analyzing functions graphically and analytically, especially when a two-sided limit does not exist.
What are One-Sided Limits?
One-sided limits examine how a function's values behave as the input approaches a particular point from one side only:
- Left-hand limit (LHL): limx→c−f(x) considers values of x approaching c from the left.
- Right-hand limit (RHL): limx→c+f(x) considers values of x approaching c from the right.
These limits are fundamental for identifying discontinuities and understanding function behavior near specific points.
Calculating One-Sided Limits
Example 1:
Consider the function f(x)=x−2x2−4.
Find the left-hand limit as x approaches 2, limx→2−f(x).
$\begin{aligned}
f(x) &= \frac{x^2 - 4}{x - 2} \\
&= \frac{(x + 2)(x - 2)}{x - 2} \quad \text{(Factor the numerator)} \\
&= x + 2 \quad \text{(Simplify, for \(x \neq 2\))} \\
\lim_{x \to 2^-} f(x) &= \lim_{x \to 2^-} (x + 2) \\
&= 2 + 2 \\
&= 4
\end{aligned}
<p></p><h4><strong>Findtheright−handlimitas</strong>x
<strong>approaches2,</strong>\lim_{x \to 2^+} f(x)
<strong>.</strong></h4><p></p>\begin{aligned} \lim{x \to 2^+} f(x) &= \lim{x \to 2^+} (x + 2) \\
&= 2 + 2 \\
&= 4 \end{aligned}
<p></p><h3><strong>Example2:HandlingInfiniteLimits</strong></h3><p>Considerg(x) = \dfrac{1}{(x - 1)^2}
.</p><p></p><h4><strong>Find</strong>\lim{x \to 1^+} g(x)
<strong><em></em>and<em></em></strong>\lim{x \to 1^-} g(x)
<strong>.</strong></h4><p></p>\begin{aligned} \lim{x \to 1^+} g(x) &= \lim{x \to 1^+} \frac{1}{(x - 1)^2} \\
&= +\infty \quad \text{(As (x) approaches 1 from the right, the denominator approaches 0, making the fraction infinitely large.)} \\
\lim{x \to 1^-} g(x) &= \lim{x \to 1^-} \frac{1}{(x - 1)^2} \\
&= +\infty \quad \text{(Similarly, as (x) approaches 1 from the left.)} \end{aligned}
<h2id="recognizing−when−one−sided−limits−differ"><strong>RecognizingWhenOne−SidedLimitsDiffer</strong></h2><h3><strong>Example3:DiscontinuousFunction</strong></h3><p>Leth(x) = \begin{cases} x^2 & \text{for } x < 3 \\
7 & \text{for } x \geq 3 \end{cases}
.</p><p></p><h4><strong>Evaluate</strong>\lim{x \to 3^-} h(x)
<strong><em></em>and</strong>\lim{x \to 3^+} h(x)
<strong>.</strong></h4><p></p>\begin{aligned}
\lim_{x \to 3^-} h(x) &= \lim_{x \to 3^-} x^2 \\
&= 3^2 \\
&= 9 \\
\lim_{x \to 3^+} h(x) &= 7 \quad \text{(Since for \(x \geq 3\), \(h(x) = 7\).)}
\end{aligned}
<p></p><h2id="practice−questions"><strong>PracticeQuestions</strong></h2><h3><strong>Question1</strong></h3><p><strong>Given</strong>f(x) = \dfrac{3x - 6}{x - 2}
,<strong>find</strong>\lim{x \to 2^-} f(x)
<em></em><strong>and</strong><em></em>\lim{x \to 2^+} f(x)
.</p><p></p><h3><strong>Question2</strong></h3><p><strong>For</strong>g(x) = \sqrt{x - 4}
,<strong>evaluate</strong>\lim_{x \to 4^+} g(x)
.</p><p></p><h3><strong>Question3</strong></h3><p><strong>If</strong>h(x) = \begin{cases} x^2 & \text{for } x < 1 \\
3 - x & \text{for } x \geq 1 \end{cases}
,<strong>determine</strong>(lim<em>x→1−h(x))<strong>and</strong>(lim</em>x→1+h(x)).</p><p></p><h2id="solutions−to−practice−questions"><strong>SolutionstoPracticeQuestions</strong></h2><h3><strong>SolutiontoQuestion1</strong></h3><h4><strong>Find</strong>\lim_{x \to 2^-} f(x)
<strong>.</strong></h4><p></p>\begin{aligned}
f(x) &= \frac{3x - 6}{x - 2} \\
&= \frac{3(x - 2)}{x - 2} \quad \text{(Factor out the 3 from the numerator)} \\
&= 3 \quad \text{(for \(x \neq 2\))} \\
\lim_{x \to 2^-} f(x) &= 3
\end{aligned}
<p></p><h4><strong>Find</strong>\lim_{x \to 2^+} f(x)
.</h4><p>\begin{aligned}
\lim_{x \to 2^+} f(x) &= 3
\end{aligned}
</p><p></p><h3><strong>SolutiontoQuestion2</strong></h3><h4><strong>Evaluate</strong>\lim_{x \to 4^+} g(x)
<strong>.</strong></h4><p></p>\begin{aligned}
g(x) &= \sqrt{x - 4} \\
\lim_{x \to 4^+} g(x) &= \sqrt{4 - 4} \\
&= \sqrt{0} \\
&= 0
\end{aligned}
<p></p><h3><strong>SolutiontoQuestion3</strong></h3><h4><strong>Determine</strong>\lim_{x \to 1^-} h(x)
.</h4><p></p>\begin{aligned}
h(x) &= x^2 \quad \text{(for \(x < 1\))} \\
\lim_{x \to 1^-} h(x) &= (1)^2 \\
&= 1
\end{aligned}
<p></p><h4><strong>Determine</strong>\lim_{x \to 1^+} h(x)
.</h4><p></p>\begin{aligned}
h(x) &= 3 - x \quad \text{(for \(x \geq 1\))} \\
\lim_{x \to 1^+} h(x) &= 3 - 1 \\
&= 2
\end{aligned}$