TutorChase logo
AP Calculus AB/BC Study Notes

1.3.1 Understanding One-Sided Limits

One-sided limits are crucial in understanding the behavior of functions as they approach a specific point from either the left or the right side. This concept is foundational for analyzing functions graphically and analytically, especially when a two-sided limit does not exist.

What are One-Sided Limits?

One-sided limits examine how a function's values behave as the input approaches a particular point from one side only:

  • Left-hand limit (LHL): limxcf(x)\lim_{x \to c^-} f(x) considers values of xx approaching cc from the left.
  • Right-hand limit (RHL): limxc+f(x)\lim_{x \to c^+} f(x) considers values of xx approaching cc from the right.
Left and Right-Sided Limits

These limits are fundamental for identifying discontinuities and understanding function behavior near specific points.

Calculating One-Sided Limits

Example 1:

Consider the function f(x)=x24x2f(x) = \frac{x^2 - 4}{x - 2}.

Find the left-hand limit as xx approaches 2, limx2f(x)\lim_{x \to 2^-} f(x).

$\begin{aligned} f(x) &= \frac{x^2 - 4}{x - 2} \\ &= \frac{(x + 2)(x - 2)}{x - 2} \quad \text{(Factor the numerator)} \\ &= x + 2 \quad \text{(Simplify, for \(x \neq 2\))} \\ \lim_{x \to 2^-} f(x) &= \lim_{x \to 2^-} (x + 2) \\ &= 2 + 2 \\ &= 4 \end{aligned}<p></p><h4><strong>Findtherighthandlimitas</strong><p></p><h4><strong>Find the right-hand limit as </strong>x<strong>approaches2,</strong><strong> approaches 2, </strong>\lim_{x \to 2^+} f(x)<strong>.</strong></h4><p></p><strong>.</strong></h4><p></p>\begin{aligned} \lim{x \to 2^+} f(x) &= \lim{x \to 2^+} (x + 2) \\ &= 2 + 2 \\ &= 4 \end{aligned} <p></p><h3><strong>Example2:HandlingInfiniteLimits</strong></h3><p>Consider<p></p><h3><strong>Example 2: Handling Infinite Limits</strong></h3><p>Consider g(x) = \dfrac{1}{(x - 1)^2}.</p><p></p><h4><strong>Find</strong>.</p><p></p><h4><strong>Find </strong>\lim{x \to 1^+} g(x)<strong><em></em>and<em></em></strong><strong><em> </em>and<em> </em></strong>\lim{x \to 1^-} g(x)<strong>.</strong></h4><p></p><strong>.</strong></h4><p></p>\begin{aligned} \lim{x \to 1^+} g(x) &= \lim{x \to 1^+} \frac{1}{(x - 1)^2} \\ &= +\infty \quad \text{(As (x) approaches 1 from the right, the denominator approaches 0, making the fraction infinitely large.)} \\ \lim{x \to 1^-} g(x) &= \lim{x \to 1^-} \frac{1}{(x - 1)^2} \\ &= +\infty \quad \text{(Similarly, as (x) approaches 1 from the left.)} \end{aligned}<h2id="recognizingwhenonesidedlimitsdiffer"><strong>RecognizingWhenOneSidedLimitsDiffer</strong></h2><h3><strong>Example3:DiscontinuousFunction</strong></h3><p>Let<h2 id="recognizing-when-one-sided-limits-differ"><strong>Recognizing When One-Sided Limits Differ</strong></h2><h3><strong>Example 3: Discontinuous Function</strong></h3><p>Let h(x) = \begin{cases} x^2 & \text{for } x < 3 \\ 7 & \text{for } x \geq 3 \end{cases}.</p><p></p><h4><strong>Evaluate</strong>.</p><p></p><h4><strong>Evaluate </strong>\lim{x \to 3^-} h(x)<strong><em></em>and</strong><strong><em> </em>and </strong>\lim{x \to 3^+} h(x)<strong>.</strong></h4><p></p><strong>.</strong></h4><p></p>\begin{aligned} \lim_{x \to 3^-} h(x) &= \lim_{x \to 3^-} x^2 \\ &= 3^2 \\ &= 9 \\ \lim_{x \to 3^+} h(x) &= 7 \quad \text{(Since for \(x \geq 3\), \(h(x) = 7\).)} \end{aligned}<p></p><h2id="practicequestions"><strong>PracticeQuestions</strong></h2><h3><strong>Question1</strong></h3><p><strong>Given</strong><p></p><h2 id="practice-questions"><strong>Practice Questions</strong></h2><h3><strong>Question 1</strong></h3><p><strong>Given</strong> f(x) = \dfrac{3x - 6}{x - 2},<strong>find</strong>, <strong>find</strong> \lim{x \to 2^-} f(x)<em></em><strong>and</strong><em></em><em> </em><strong>and</strong><em> </em>\lim{x \to 2^+} f(x).</p><p></p><h3><strong>Question2</strong></h3><p><strong>For</strong>.</p><p></p><h3><strong>Question 2</strong></h3><p><strong>For</strong> g(x) = \sqrt{x - 4},<strong>evaluate</strong>, <strong>evaluate</strong> \lim_{x \to 4^+} g(x).</p><p></p><h3><strong>Question3</strong></h3><p><strong>If</strong>.</p><p></p><h3><strong>Question 3</strong></h3><p><strong>If</strong> h(x) = \begin{cases} x^2 & \text{for } x < 1 \\ 3 - x & \text{for } x \geq 1 \end{cases},<strong>determine</strong>(lim<em>x1h(x))<strong>and</strong>(lim</em>x1+h(x)).</p><p></p><h2id="solutionstopracticequestions"><strong>SolutionstoPracticeQuestions</strong></h2><h3><strong>SolutiontoQuestion1</strong></h3><h4><strong>Find</strong>, <strong>determine</strong> (\lim<em>{x \to 1^-} h(x)) <strong>and</strong> (\lim</em>{x \to 1^+} h(x)).</p><p></p><h2 id="solutions-to-practice-questions"><strong>Solutions to Practice Questions</strong></h2><h3><strong>Solution to Question 1</strong></h3><h4><strong>Find </strong>\lim_{x \to 2^-} f(x)<strong>.</strong></h4><p></p><strong>.</strong></h4><p></p>\begin{aligned} f(x) &= \frac{3x - 6}{x - 2} \\ &= \frac{3(x - 2)}{x - 2} \quad \text{(Factor out the 3 from the numerator)} \\ &= 3 \quad \text{(for \(x \neq 2\))} \\ \lim_{x \to 2^-} f(x) &= 3 \end{aligned}<p></p><h4><strong>Find</strong><p></p><h4><strong>Find </strong>\lim_{x \to 2^+} f(x).</h4><p>.</h4><p>\begin{aligned} \lim_{x \to 2^+} f(x) &= 3 \end{aligned} </p><p></p><h3><strong>SolutiontoQuestion2</strong></h3><h4><strong>Evaluate</strong></p><p></p><h3><strong>Solution to Question 2</strong></h3><h4><strong>Evaluate </strong>\lim_{x \to 4^+} g(x)<strong>.</strong></h4><p></p><strong>.</strong></h4><p></p>\begin{aligned} g(x) &= \sqrt{x - 4} \\ \lim_{x \to 4^+} g(x) &= \sqrt{4 - 4} \\ &= \sqrt{0} \\ &= 0 \end{aligned}<p></p><h3><strong>SolutiontoQuestion3</strong></h3><h4><strong>Determine</strong><p> </p><h3><strong>Solution to Question 3</strong></h3><h4><strong>Determine </strong>\lim_{x \to 1^-} h(x).</h4><p></p>.</h4><p></p>\begin{aligned} h(x) &= x^2 \quad \text{(for \(x < 1\))} \\ \lim_{x \to 1^-} h(x) &= (1)^2 \\ &= 1 \end{aligned}<p></p><h4><strong>Determine</strong><p></p><h4><strong>Determine </strong>\lim_{x \to 1^+} h(x).</h4><p></p>.</h4><p></p>\begin{aligned} h(x) &= 3 - x \quad \text{(for \(x \geq 1\))} \\ \lim_{x \to 1^+} h(x) &= 3 - 1 \\ &= 2 \end{aligned}$

Hire a tutor

Please fill out the form and we'll find a tutor for you.

1/2
Your details
Alternatively contact us via
WhatsApp, Phone Call, or Email