TutorChase logo
AP Calculus AB/BC Study Notes

1.1.2 Average Rate of Change

The concept of the Average Rate of Change (ARC) is foundational in calculus, enabling us to understand how one quantity changes in relation to another over a given interval. This calculation divides the change in one variable by the change in another, offering a quantifiable measure of change between two points. Through calculus, the ARC concept evolves, especially as we approach intervals where the change in the independent variable tends toward zero, presenting challenges in traditional calculations.

Average Rate of Change Graph

Understanding Average Rate of Change

Definition: The ARC between two points on a function y=f(x)y = f(x) is defined as:

ARC=ΔyΔx=f(x2)f(x1)x2x1ARC = \frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}

where Δy\Delta y is the change in the function's value, and Δx \Delta x is the change in the independent variable's value.

Importance: This concept is crucial for understanding how the output of a function changes relative to changes in the input, providing a basis for more complex calculus concepts, including the derivative.

Transitioning to Calculus

  • Limits and the ARC: As the interval Δx\Delta x approaches zero, we encounter the concept of a limit. Calculus allows us to explore what happens to the ARC as x2x_2 approaches x1x_1, moving towards an instantaneous rate of change.
    • Example of applying limits to ARC:
limΔx0f(x1+Δx)f(x1)Δx\lim_{\Delta x \rightarrow 0} \frac{f(x_1 + \Delta x) - f(x_1)}{\Delta x}

Calculating Average Rate of Change: Examples

Example 1: Linear Function

Consider the function f(x)=2x+3f(x) = 2x + 3 over the interval [1, 4].

  • Step 1: Identify x1x_1 and x2x_2, x1=1x_1 = 1, x2=4x_2 = 4.
  • Step 2: Calculate f(x1)f(x_1) and f(x2)f(x_2), f(1)=5f(1) = 5, f(4)=11f(4) = 11.
  • Step 3: Compute ARC,
$\begin{gathered} &&&&& ARC = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \\ &&&&& = \frac{11 - 5}{4 - 1} \\ &&&&& = \frac{6}{3} \\ &&&&& = 2 \end{gathered}<p></p><ul><li><strong>Result</strong>:TheARCof<p></p><ul><li><strong>Result</strong>: The ARC of f(x)over[1,4]is2.</li></ul><p></p><ul><li><strong>GraphicalRepresentation</strong></li></ul><imgsrc="https://tutorchaseproduction.s3.euwest2.amazonaws.com/e7afb681f43c448e92c5da423c8af9f8file.png"alt="LinearFunctionGraph"style="width:500px;height:386px"width="500"height="386"><p></p><h3><strong>Example2:QuadraticFunction</strong></h3><p>Consider over [1, 4] is 2.</li></ul><p></p><ul><li><strong>Graphical Representation</strong></li></ul><img src="https://tutorchase-production.s3.eu-west-2.amazonaws.com/e7afb681-f43c-448e-92c5-da423c8af9f8-file.png" alt="Linear Function Graph" style="width: 500px; height: 386px" width="500" height="386"><p></p><h3><strong>Example 2: Quadratic Function</strong></h3><p>Consider f(x) = x^2overtheinterval[2,5].</p><ul><li><strong>Step1</strong>:Identifypoints, over the interval [2, 5].</p><ul><li><strong>Step 1</strong>: Identify points, x_1 = 2,, x_2 = 5.</li><li><strong>Step2</strong>:Evaluate.</li><li><strong>Step 2</strong>: Evaluate f(x_1)and and f(x_2),, f(2) = 4,, f(5) = 25.</li><li><strong>Step3</strong>:CalculateARC,</li></ul><p></p>.</li><li><strong>Step 3</strong>: Calculate ARC, </li></ul><p></p>\begin{gathered} &&&&& ARC = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \\ &&&&& = \frac{25 - 4}{5 - 2} \\ &&&&& = \frac{21}{3} \\ &&&&& = 7 \end{gathered} <p></p><ul><li><strong>Result</strong>:TheARCof<p></p><ul><li><strong>Result</strong>: The ARC of f(x)over[2,5]is7.</li></ul><p></p><ul><li><strong>GraphicalRepresentation:</strong></li></ul><imgsrc="https://tutorchaseproduction.s3.euwest2.amazonaws.com/585fefb18aea41c6a24c0f74789a5f0efile.png"alt="QuadraticFunctionGraph"style="width:500px;height:398px"width="500"height="398"><p><strong><br></strong></p><h3><strong>Example3:UsingLimitstoExploreARCsApproachtoZero</strong></h3><p>Consider over [2, 5] is 7.</li></ul><p></p><ul><li><strong>Graphical Representation:</strong></li></ul><img src="https://tutorchase-production.s3.eu-west-2.amazonaws.com/585fefb1-8aea-41c6-a24c-0f74789a5f0e-file.png" alt="Quadratic Function Graph" style="width: 500px; height: 398px" width="500" height="398"><p><strong><br></strong></p><h3><strong>Example 3: Using Limits to Explore ARC's Approach to Zero</strong></h3><p>Consider f(x) = x^2as as \Delta xapproaches0from[3, approaches 0 from [3, 3 + \Delta x].</p><p></p><ul><li><strong>Step1</strong>:ExpressARCasalimit,</li></ul><p></p>].</p><p></p><ul><li><strong>Step 1</strong>: Express ARC as a limit, </li></ul><p></p>\begin{aligned} && & \lim{\Delta x \rightarrow 0} \frac{f(3 + \Delta x) - f(3)}{\Delta x} \\ && = & \lim{\Delta x \rightarrow 0} \frac{(3 + \Delta x)^2 - 9}{\Delta x} \\ && = & \lim{\Delta x \rightarrow 0} \frac{9 + 6\Delta x + \Delta x^2 - 9}{\Delta x} \\ && = & \lim{\Delta x \rightarrow 0} \frac{6\Delta x + \Delta x^2}{\Delta x} \\ && = & \lim_{\Delta x \rightarrow 0} 6 + \Delta x \\ && = & 6 \end{aligned}<ul><li><strong>Result</strong>:As<ul><li><strong>Result</strong>: As \Delta xapproaches0,theAverageRateofChangeof approaches 0, the Average Rate of Change of f(x) = x^2at at x = 3approaches6.Thisreflectstheinstantaneousrateofchange,orderivative,of approaches 6. This reflects the instantaneous rate of change, or derivative, of f(x)at at x = 3.</li></ul><p></p><ul><li><strong>GraphicalRepresentation:</strong></li></ul><imgsrc="https://tutorchaseproduction.s3.euwest2.amazonaws.com/059dfc4b47974326a37fad0162249e41file.png"alt="UsingLimitstoExploreARCsApproachtoZero"style="width:500px;height:396px"width="500"height="396"><p></p><h3><strong>Example4:RealWorldApplication</strong></h3><p>Consideravehiclesdistancetraveled,describedby.</li></ul><p></p><ul><li><strong>Graphical Representation:</strong></li></ul><img src="https://tutorchase-production.s3.eu-west-2.amazonaws.com/059dfc4b-4797-4326-a37f-ad0162249e41-file.png" alt="Using Limits to Explore ARC's Approach to Zero" style="width: 500px; height: 396px" width="500" height="396"><p></p><h3><strong>Example 4: Real-World Application</strong></h3><p>Consider a vehicle's distance traveled, described by f(t) = 4t^2 + 2twhere where f(t)isdistanceinmetersand(t)istimeinseconds,overtheinterval[1,4]seconds.</p><p></p><ul><li><strong>Step1</strong>:Identify is distance in meters and (t) is time in seconds, over the interval [1, 4] seconds.</p><p></p><ul><li><strong>Step 1</strong>: Identify t_1 = 1,, t_2 = 4.</li><li><strong>Step2</strong>:Calculate.</li><li><strong>Step 2</strong>: Calculate f(t_1)and and f(t_2),, f(1) = 6,, f(4) = 72.</li><li><strong>Step3</strong>:ComputeARC,</li></ul><p></p>.</li><li><strong>Step 3</strong>: Compute ARC, </li></ul><p></p> \begin{aligned} && ARC = \frac{f(t_2) - f(t_1)}{t_2 - t_1} \\ && = \frac{72 - 6}{4 - 1} \\ && = \frac{66}{3} \\ && = 22 \end{aligned}<p></p><ul><li><strong>Result</strong>:Thevehiclesaveragespeedovertheinterval[1,4]secondsis22meterspersecond.</li></ul><p></p><h3><strong>Example5:ChangingRates</strong></h3><p>Foraballoonbeinginflated,thevolume<p></p><ul><li><strong>Result</strong>: The vehicle's average speed over the interval [1, 4] seconds is 22 meters per second.</li></ul><p></p><h3><strong>Example 5: Changing Rates</strong></h3><p>For a balloon being inflated, the volume Vincubiccentimetersisgivenby in cubic centimeters is given by V(t) = \frac{4}{3}\pi(6t)^3where where tistimeinminutes.CalculatetheARCofvolumechangebetween2and5minutes.</p><ul><li><strong>Step1</strong>:Identify is time in minutes. Calculate the ARC of volume change between 2 and 5 minutes.</p><ul><li><strong>Step 1</strong>: Identify t_1 = 2,, t_2 = 5.</li><li><strong>Step2</strong>:Calculate.</li><li><strong>Step 2</strong>: Calculate V(t_1)and and V(t_2),</li></ul><p></p>, </li></ul><p></p>\begin{aligned} &&&&& V(2) & = \frac{4}{3}\pi(6 \cdot 2)^3, \\ &&&&& V(5) & = \frac{4}{3}\pi(6 \cdot 5)^3. \end{aligned}<p></p><ul><li><strong>Step3</strong>:ComputeARC,</li></ul><p></p><p></p><ul><li><strong>Step 3</strong>: Compute ARC, </li></ul><p></p>\begin{aligned} ARC & = \frac{V(t_2) - V(t_1)}{t_2 - t_1} \\ & = \frac{\frac{4}{3}\pi(6 \cdot 5)^3 - \frac{4}{3}\pi(6 \cdot 2)^3}{5 - 2} \\ & = \frac{4}{3}\pi \left( \frac{(6 \cdot 5)^3 - (6 \cdot 2)^3}{3} \right) \\ & = 468\pi \end{aligned}<p></p><ul><li><strong>Result</strong>:Theaveragerateofvolumechangebetween2and5minutesis<p></p><ul><li><strong>Result</strong>: The average rate of volume change between 2 and 5 minutes is 468\picubiccentimetersperminute,illustratinghowvolumesofthreedimensionalshapescanchangeovertime.</li></ul><h2id="practicequestions"><strong>PracticeQuestions</strong></h2><h3><strong>Question1</strong></h3><p>Giventhefunction cubic centimeters per minute, illustrating how volumes of three-dimensional shapes can change over time.</li></ul><h2 id="practice-questions"><strong>Practice Questions</strong></h2><h3><strong>Question 1</strong></h3><p>Given the function f(x) = 3x^2 - 2x + 5,calculatetheaveragerateofchangefrom, calculate the average rate of change from x = 1to to x = 4.</p><h3><strong>Question2</strong></h3><p>Asphericalballoonisbeinginflatedsothatitsvolumeatanytime.</p><h3><strong>Question 2</strong></h3><p>A spherical balloon is being inflated so that its volume at any time tinsecondsisgivenby in seconds is given by V(t) = \frac{4}{3}\pi t^3.Calculatetheaveragerateofchangeoftheballoonsvolumefrom. Calculate the average rate of change of the balloon's volume from t = 2secondsto seconds to t = 5seconds.</p><h3><strong>Question3</strong></h3><p>Forthefunction seconds.</p><h3><strong>Question 3</strong></h3><p>For the function g(x) = \ln(x),computetheaveragerateofchangebetween, compute the average rate of change between x = 1and and x = e,where, where eisthebaseofnaturallogarithms.</p><p></p><h2id="solutionstopracticequestions"><strong>SolutionstoPracticeQuestions</strong></h2><h3><strong>SolutiontoQuestion1</strong></h3><p><strong>1.Identifythefunctionandpoints</strong>: is the base of natural logarithms.</p><p></p><h2 id="solutions-to-practice-questions"><strong>Solutions to Practice Questions</strong></h2><h3><strong>Solution to Question 1</strong></h3><p><strong>1. Identify the function and points</strong>: f(x) = 3x^2 - 2x + 5, x_1 = 1, x_2 = 4.</p><p><strong>2.Calculate</strong>.</p><p><strong>2. Calculate </strong>f(x_1)<strong>and</strong><strong> and </strong>f(x_2):</p><p></p>: </p><p></p>f(1) = 3(1)^2 - 2(1) + 5 = 6, \\ f(4) = 3(4)^2 - 2(4) + 5 = 41.<p></p><p><strong>3.Computetheaveragerateofchange</strong>:</p><p></p><p></p><p><strong>3. Compute the average rate of change</strong>: </p><p></p>\begin{aligned} ARC &= \frac{f(x_2) - f(x_1)}{x_2 - x_1} \\ &= \frac{41 - 6}{4 - 1} \\ &= \frac{35}{3} \\ &= 11\frac{2}{3}. \end{aligned}<p></p><p><strong>4.Result</strong>:Theaveragerateofchangefrom<p></p><p><strong>4. Result</strong>: The average rate of change from x = 1to to x = 4is is 11\frac{2}{3}.</p><p></p><h3><strong>SolutiontoQuestion2</strong></h3><p><strong>1.Givenvolumefunction</strong>:.</p><p></p><h3><strong>Solution to Question 2</strong></h3><p><strong>1. Given volume function</strong>: V(t) = \frac{4}{3}\pi t^3,with, with t_1 = 2and and t_2 = 5.</p><p><strong>2.Find</strong>.</p><p><strong>2. Find </strong>V(t_1)<strong>and</strong><strong> and </strong>V(t_2):</p><p></p>: </p><p></p>V(2) = \frac{4}{3}\pi (2)^3 = \frac{32}{3}\pi, \\ V(5) = \frac{4}{3}\pi (5)^3 = \frac{500}{3}\pi.<p></p><p><strong>3.CalculateARC</strong>:</p><p></p><p></p><p><strong>3. Calculate ARC</strong>: </p><p></p>\begin{aligned} ARC &= \frac{V(t_2) - V(t_1)}{t_2 - t_1} \\ &= \frac{\frac{500}{3}\pi - \frac{32}{3}\pi}{5 - 2} \\ &= \frac{468\pi}{3} \\ &= 156\pi. \end{aligned}<p></p><p><strong>4.Result</strong>:Theaveragerateofchangeofthevolumefrom<p></p><p><strong>4. Result</strong>: The average rate of change of the volume from t = 2to to t = 5secondsisseconds is 156\picubicunitspersecond.</p><p></p><h3><strong>SolutiontoQuestion3</strong></h3><p><strong>1.Identifythefunctionandinterval</strong>: cubic units per second.</p><p></p><h3><strong>Solution to Question 3</strong></h3><p><strong>1. Identify the function and interval</strong>: g(x) = \ln(x),from, from x = 1to to x = e.</p><p><strong>2.Calculate</strong>.</p><p><strong>2. Calculate </strong>g(x_1)<strong>and</strong><strong> and </strong>g(x_2):</p><p></p>: </p><p></p>g(1) = \ln(1) = 0, \\ g(e) = \ln(e) = 1.<p></p><p><strong>3.ComputetheARC</strong>:</p><p></p><p></p><p><strong>3. Compute the ARC</strong>: </p><p></p>\begin{aligned} ARC &= \frac{g(x_2) - g(x_1)}{x_2 - x_1} \\ &= \frac{1 - 0}{e - 1} \\ &= \frac{1}{e - 1}. \end{aligned}<p></p><p><strong>4.Result</strong>:Theaveragerateofchangeof<p></p><p><strong>4. Result</strong>: The average rate of change of g(x)between between x = 1and and x = eis is \frac{1}{e - 1}$.

Hire a tutor

Please fill out the form and we'll find a tutor for you.

1/2
Your details
Alternatively contact us via
WhatsApp, Phone Call, or Email