TutorChase logo
AP Calculus AB/BC Study Notes

1.1.1 Understanding Dynamic Change through Calculus

Calculus serves as a pivotal tool in comprehending and modeling the dynamics of change across various contexts. This segment of study notes delves into the essence of calculus, highlighting its role in generalizing knowledge about motion and addressing diverse problems of change through the concept of limits. By engaging with these notes, students will gain insights into utilizing limits to conceptualize and solve problems involving dynamic change, a foundational aspect of calculus critical for further studies in this field.

Introduction to Limits

Limits are fundamental in calculus, allowing us to explore values that functions approach as the input reaches a certain point.

Definition of a Limit: Let f(x)f(x) be a function defined on an interval containing cc (except possibly at cc) and let LL be a real number. The statement

$\lim _{x \rightarrow c} f(x) = L <p></p><p>meansthatforevery<p></p><p>means that for every \epsilon > 0thereexistsa there exists a \delta > 0suchthatif such that if 0 < |x - c| < \delta,then, then |f(x) - L| < \epsilon.</p><p></p><p><strong>IntuitiveUnderstanding:</strong>As.</p><p></p><p><strong>Intuitive Understanding:</strong> As xapproaches approaches c,thevalueof, the value of f(x)getsarbitrarilycloseto gets arbitrarily close to L.</p><h2id="theroleoflimitsinunderstandingdynamicchange"><strong>TheRoleofLimitsinUnderstandingDynamicChange</strong></h2><p>Limitsprovidetheframeworktoquantifychangesoccurringinaninstant,whicharepivotalinunderstandingandmodelingdynamicsystems.</p><h3><strong>Example1:CalculatingInstantaneousSpeed</strong></h3><imgsrc="https://tutorchaseproduction.s3.euwest2.amazonaws.com/bca7517cb4114633b4a7d950f3a9c1dffile.png"alt="InstantaneousSpeed"style="width:700px;height:247px"width="700"height="247"><p>Imagecourtesyof<ahref="https://byjus.com/">BYJUS</a></p><p></p><p><strong>Scenario:</strong>Acartravelsinastraightlineanditsposition.</p><h2 id="the-role-of-limits-in-understanding-dynamic-change"><strong>The Role of Limits in Understanding Dynamic Change</strong></h2><p>Limits provide the framework to quantify changes occurring in an instant, which are pivotal in understanding and modeling dynamic systems.</p><h3><strong>Example 1: Calculating Instantaneous Speed</strong></h3><img src="https://tutorchase-production.s3.eu-west-2.amazonaws.com/bca7517c-b411-4633-b4a7-d950f3a9c1df-file.png" alt="Instantaneous Speed" style="width: 700px; height: 247px" width="700" height="247"><p>Image courtesy of <a href="https://byjus.com/">BYJUS</a></p><p></p><p><strong>Scenario:</strong> A car travels in a straight line and its position sattime at time tisgivenby is given by s(t) = t^2 + 2t,where, where sisinmetersand is in meters and tisinseconds.Findthecarsinstantaneousspeedat is in seconds. Find the car's instantaneous speed at t = 3seconds.</p><p></p><p><strong>Solution:</strong></p> seconds.</p><p></p><p><strong>Solution:</strong></p>\begin{aligned} \text{Instantaneous speed at } t = 3 & = \lim {h \rightarrow 0} \frac{s(3+h) - s(3)}{h} \\ & = \lim {h \rightarrow 0} \frac{[(3+h)^2 + 2(3+h)] - (3^2 + 2\cdot3)}{h} \\ & = \lim {h \rightarrow 0} \frac{9 + 6h + h^2 + 6 + 2h - 9 - 6}{h} \ & \\ & = \lim {h \rightarrow 0} \frac{h^2 + 8h}{h} \\ & = \lim _{h \rightarrow 0} (h + 8) \\ & = 8. \end{aligned}<p>Thus,theinstantaneousspeedofthecarat<p>Thus, the instantaneous speed of the car at t = 3secondsis seconds is 8meterspersecond.</p><p></p><h3><strong>Example2:UnderstandingChangeinTemperature</strong></h3><p><strong>Scenario:</strong>Thetemperature meters per second.</p><p></p><h3><strong>Example 2: Understanding Change in Temperature</strong></h3><p><strong>Scenario:</strong> The temperature TindegreesCelsiusataspecificlocationasafunctionoftime in degrees Celsius at a specific location as a function of time tinhoursisgivenby in hours is given by T(t) = 3t^2 - 2t + 1.Calculatetherateoftemperaturechangeat. Calculate the rate of temperature change at t = 4hours.</p><p></p><p><strong>Solution:</strong></p> hours.</p><p></p><p><strong>Solution:</strong></p>\begin{aligned} \text{Rate of temperature change at } t = 4 & = \lim _{h \rightarrow 0} \frac{T(4+h) - T(4)}{h} \\ & = \lim _{h \rightarrow 0} \frac{[3(4+h)^2 - 2(4+h) + 1] - (3\cdot4^2 - 2\cdot4 + 1)}{h} \\ & = \lim _{h \rightarrow 0} \frac{3(16 + 8h + h^2) - 2(4 + h) + 1 - (48 - 8 + 1)}{h} \\ & = \lim _{h \rightarrow 0} \frac{48 + 24h + 3h^2 - 8 - 2h + 1 - 41}{h} \\ & = \lim _{h \rightarrow 0} \frac{3h^2 + 22h}{h} \\ & = \lim _{h \rightarrow 0} (3h + 22) \\ & = 22. \end{aligned} <p></p><p>Therateoftemperaturechangeat<p></p><p>The rate of temperature change at t = 4hoursis hours is 22degreesCelsiusperhour.</p><h2id="applicationoflimitsincalculus"><strong>ApplicationofLimitsinCalculus</strong></h2><p>Theapplicationoflimitsextendsbeyondphysicalmotionandtemperaturechanges,encompassingeconomicmodels,biologicalgrowthpatterns,andchemicalreactionrates.</p><p></p><h3><strong>Example3:EconomicModelProfitMaximization</strong></h3><imgsrc="https://tutorchaseproduction.s3.euwest2.amazonaws.com/27fc6573e0674bd4935e8ae3b19cdbedfile.png"alt="EconomicModelProfitMaximization"style="width:500px;height:365px"width="500"height="365"><p>Imagecourtesyof<ahref="https://open.oregonstate.education/intermediatemicroeconomics/chapter/module9/">OregonState.Education</a></p><p></p><p><strong>Scenario:</strong>Acompanysprofit(P)inthousandsofdollarsismodeledbythefunction degrees Celsius per hour.</p><h2 id="application-of-limits-in-calculus"><strong>Application of Limits in Calculus</strong></h2><p>The application of limits extends beyond physical motion and temperature changes, encompassing economic models, biological growth patterns, and chemical reaction rates.</p><p></p><h3><strong>Example 3: Economic Model - Profit Maximization</strong></h3><img src="https://tutorchase-production.s3.eu-west-2.amazonaws.com/27fc6573-e067-4bd4-935e-8ae3b19cdbed-file.png" alt="Economic Model - Profit Maximization" style="width: 500px; height: 365px" width="500" height="365"><p>Image courtesy of <a href="https://open.oregonstate.education/intermediatemicroeconomics/chapter/module-9/">OregonState.Education</a></p><p></p><p><strong>Scenario:</strong> A company's profit (P) in thousands of dollars is modeled by the function P(x) = -2x^2 + 12x - 20,where, where xrepresentsthenumberofunitsproducedandsoldinthousands.Determinethenumberofunitsthatmustbeproducedandsoldtomaximizeprofit.</p><p></p><p><strong>Solution:</strong></p><p>First,wefindthederivativeof represents the number of units produced and sold in thousands. Determine the number of units that must be produced and sold to maximize profit.</p><p></p><p><strong>Solution:</strong></p><p>First, we find the derivative of P(x)toidentifytherateofchangeofprofitwithrespecttothenumberofunits.Themaximumprofitoccurswherethisderivativeiszero.</p><p></p> to identify the rate of change of profit with respect to the number of units. The maximum profit occurs where this derivative is zero.</p><p></p>\begin{aligned} P'(x) & = \frac{d}{dx}(-2x^2 + 12x - 20) \\ & = -4x + 12. \end{aligned}<p></p><p>Setting<p></p><p>Setting P'(x) = 0tofindthecriticalpoint:</p><p></p> to find the critical point:</p><p></p> -4x + 12 = 0 \\ 4x = 12 \\ x = 3.<p></p><p><strong>Conclusion:</strong>Tomaximizeprofit,thecompanymustproduceandsell<p></p><p><strong>Conclusion:</strong> To maximize profit, the company must produce and sell 3,000units.</p><p></p><h3><strong>ApplicationinBiology:PopulationGrowthRate</strong></h3><imgsrc="https://tutorchaseproduction.s3.euwest2.amazonaws.com/92287a9933304687a4e6b9f56b7bac91file.png"alt="ExponentialandLogisticGrowth"style="width:600px;height:280px"width="600"height="280"><p>Considerapopulationofbacteriathatgrowsaccordingtothefunction units.</p><p></p><h3><strong>Application in Biology: Population Growth Rate</strong></h3><img src="https://tutorchase-production.s3.eu-west-2.amazonaws.com/92287a99-3330-4687-a4e6-b9f56b7bac91-file.png" alt="Exponential and Logistic Growth" style="width: 600px; height: 280px" width="600" height="280"><p>Consider a population of bacteria that grows according to the function P(t) = 100e^{0.5t},where, where Pisthepopulationsizeand is the population size and tistimeinhours.</p><p></p><p><strong>Scenario:</strong>Determinetherateofpopulationgrowthat is time in hours.</p><p></p><p><strong>Scenario:</strong> Determine the rate of population growth at t = 2hours.</p><p></p><p><strong>Solution:</strong></p><p>Thegrowthrateisthederivativeof hours.</p><p></p><p><strong>Solution:</strong></p><p>The growth rate is the derivative of P(t)withrespectto with respect to t:</p><p></p>:</p><p></p>\begin{aligned} \frac{dP}{dt} & = \frac{d}{dt}(100e^{0.5t}) \\ & = 100 \cdot 0.5e^{0.5t} \\ & = 50e^{0.5t}. \end{aligned}<p></p><p>Substitute<p></p><p>Substitute t = 2tofindtherateatthattime:</p><p></p> to find the rate at that time:</p><p></p>\begin{aligned} \frac{dP}{dt} \bigg|_{t=2} & = 50e^{0.5\cdot2} \\ & = 50e^1 \\ & = 50e \\ & \approx 135.9. \end{aligned}<p></p><p><strong>Conclusion:</strong>Therateofpopulationgrowthat<p></p><p><strong>Conclusion:</strong> The rate of population growth at t = 2hoursisapproximately hours is approximately 135.9bacteriaperhour.</p><p></p><h3><strong>ChemicalKinetics:RateofReaction</strong></h3><imgsrc="https://tutorchaseproduction.s3.euwest2.amazonaws.com/b293cf6d0e5c47c4aed9f30259318668file.png"alt="ChemicalKinetics:RateofReaction"style="width:500px;height:354px"width="500"height="354"><p>Inachemicalreaction,theconcentrationofareactant bacteria per hour.</p><p></p><h3><strong>Chemical Kinetics: Rate of Reaction</strong></h3><img src="https://tutorchase-production.s3.eu-west-2.amazonaws.com/b293cf6d-0e5c-47c4-aed9-f30259318668-file.png" alt="Chemical Kinetics: Rate of Reaction" style="width: 500px; height: 354px" width="500" height="354"><p>In a chemical reaction, the concentration of a reactant Adecreasesovertimeaccordingtothefunction decreases over time according to the function A(t) = 50e^{-0.3t},where, where Aistheconcentrationinmolesperliterand is the concentration in moles per liter and tistimeinseconds.</p><p></p><p><strong>Scenario:</strong>Findtherateofdecreaseof is time in seconds.</p><p></p><p><strong>Scenario:</strong> Find the rate of decrease of Aat at t = 5seconds.</p><p></p><p><strong>Solution:</strong></p><p>Therateofdecreaseisthenegativederivativeof seconds.</p><p></p><p><strong>Solution:</strong></p><p>The rate of decrease is the negative derivative of A(t)withrespectto with respect to t:</p><p></p>:</p><p></p>\begin{aligned} -\frac{dA}{dt} & = -\frac{d}{dt}(50e^{-0.3t}) \\ & = 50 \cdot 0.3e^{-0.3t} \\ & = 15e^{-0.3t}. \end{aligned}<p></p><p>Substituting<p></p><p>Substituting t = 5gives:</p><p></p> gives:</p><p></p>\begin{aligned} -\frac{dA}{dt} \bigg|_{t=5} & = 15e^{-0.3\cdot5} \\ & = 15e^{-1.5} \\ & \approx 15 \cdot 0.2231 \\ & \approx 3.347. \end{aligned}<p></p><p><strong>Conclusion:</strong>Therateofdecreaseintheconcentrationof<p></p><p><strong>Conclusion:</strong> The rate of decrease in the concentration of Aat at t = 5secondsisapproximately seconds is approximately 3.347molesperliterpersecond.</p><h2id="practicequestions"><strong>PracticeQuestions</strong></h2><h3>Question1</h3><p>Evaluatethelimit moles per liter per second.</p><h2 id="practice-questions"><strong>Practice Questions</strong></h2><h3>Question 1</h3><p>Evaluate the limit \lim_{x \rightarrow 2} \frac{x^2 - 4}{x - 2}.</p><p></p><h3>Question2</h3><p>Aboxwithasquarebaseandnotopistobemadefromasquarepieceofcardboardbycuttingsquaresfromeachcornerandfoldingupthesides.Ifthepieceofcardboardis12inchesoneachside,whatsizesquareshouldbecutfromeachcornertomaximizethevolumeofthebox?</p><h2id="solutionstopracticequestions">SolutionstoPracticeQuestions</h2><h3>SolutiontoQuestion1</h3><p><strong>1.IdentifytheProblem:</strong>Substituting.</p><p></p><h3>Question 2</h3><p>A box with a square base and no top is to be made from a square piece of cardboard by cutting squares from each corner and folding up the sides. If the piece of cardboard is 12 inches on each side, what size square should be cut from each corner to maximize the volume of the box?</p><h2 id="solutions-to-practice-questions">Solutions to Practice Questions</h2><h3>Solution to Question 1</h3><p><strong>1. Identify the Problem:</strong> Substituting x = 2directlyintothefunctionyieldstheindeterminateform directly into the function yields the indeterminate form 0/0,suggestingtheneedforsimplification.</p><p><strong>2.SimplifytheExpression:</strong>Factorthenumerator:</p><p></p>, suggesting the need for simplification.</p><p><strong>2. Simplify the Expression:</strong> Factor the numerator:</p><p></p>\frac{x^2 - 4}{x - 2} = \frac{(x + 2)(x - 2)}{x - 2}.<p></p><p>Canceloutthe<p></p><p>Cancel out the (x - 2)terms:</p><p></p> terms:</p><p></p>\frac{(x + 2)(x - 2)}{x - 2} = x + 2.<p></p><p><strong>3.EvaluatetheLimit:</strong>Withtheexpressionsimplified,substitute<p></p><p><strong>3. Evaluate the Limit:</strong> With the expression simplified, substitute x = 2:</p><p></p>:</p><p></p>\lim_{x \rightarrow 2} (x + 2) = 4.<p></p><p><strong>Conclusion:</strong>Thelimit<p></p><p><strong>Conclusion:</strong> The limit \lim_{x \rightarrow 2} \frac{x^2 - 4}{x - 2} = 4.</p><p></p><h3>SolutiontoQuestion2</h3><p><strong>1.FormulatetheProblem:</strong>Define.</p><p></p><h3>Solution to Question 2</h3><p><strong>1. Formulate the Problem:</strong> Define xasthelengthofthesideofthesquarecutfromeachcorner.Thedimensionsoftheboxwillbe as the length of the side of the square cut from each corner. The dimensions of the box will be 12 - 2xby by 12 - 2xby by x.</p><p><strong>2.VolumeFunction:</strong>Thevolume.</p><p><strong>2. Volume Function:</strong> The volume Visgivenby:</p><p></p> is given by:</p><p></p>V = x(12 - 2x)^2.<p></p><p>Simplifythisto:</p><p></p><p></p><p>Simplify this to:</p><p></p>V = 4x^3 - 48x^2 + 144x.<p></p><p><strong>3.FindtheCriticalPoints:</strong>Derive<p></p><p><strong>3. Find the Critical Points:</strong> Derive Vwithrespectto with respect to xandsetto0tofindcriticalpoints:</p><p></p> and set to 0 to find critical points:</p><p></p>\frac{dV}{dx} = 12x^2 - 96x + 144.<p></p><p>Simplifyandsolvethequadraticequation:</p><p></p><p></p><p>Simplify and solve the quadratic equation:</p><p></p>12x^2 - 96x + 144 = 0 \Rightarrow x^2 - 8x + 12 = 0.<p></p><p>Factoring:</p><p><p></p><p>Factoring:</p><p>(x - 6)(x - 2) = 0,</p><p>yields</p><p>yields x = 6or or x = 2.</p><p></p><p><strong>4.DeterminetheMaximum:</strong>Bylogicalconstraints,.</p><p></p><p><strong>4. Determine the Maximum:</strong> By logical constraints, x = 2istheviablesolutionas is the viable solution as x = 6wouldleavenomaterialfortheboxsides.</p><p></p><p><strong>5.EvaluatetheVolumeat</strong> would leave no material for the box sides.</p><p></p><p><strong>5. Evaluate the Volume at </strong>x = 2<strong>:</strong>Substitute<strong>:</strong> Substitute x = 2intothevolumeequation:</p><p></p> into the volume equation:</p><p></p>V = 4(2)^3 - 48(2)^2 + 144(2) = 128 \text{ cubic inches}.$

6. Conclusion: To maximize the volume, squares of 2 inches should be cut from each corner, yielding a box with a volume of 128 cubic inches.

Hire a tutor

Please fill out the form and we'll find a tutor for you.

1/2
Your details
Alternatively contact us via
WhatsApp, Phone Call, or Email