Calculus serves as a pivotal tool in comprehending and modeling the dynamics of change across various contexts. This segment of study notes delves into the essence of calculus, highlighting its role in generalizing knowledge about motion and addressing diverse problems of change through the concept of limits. By engaging with these notes, students will gain insights into utilizing limits to conceptualize and solve problems involving dynamic change, a foundational aspect of calculus critical for further studies in this field.
Introduction to Limits
Limits are fundamental in calculus, allowing us to explore values that functions approach as the input reaches a certain point.
Definition of a Limit: Let f(x) be a function defined on an interval containing c (except possibly at c) and let L be a real number. The statement
$\lim _{x \rightarrow c} f(x) = L
<p></p><p>meansthatforevery\epsilon > 0
thereexistsa\delta > 0
suchthatif0 < |x - c| < \delta
,then|f(x) - L| < \epsilon
.</p><p></p><p><strong>IntuitiveUnderstanding:</strong>Asx
approachesc
,thevalueoff(x)
getsarbitrarilyclosetoL
.</p><h2id="the−role−of−limits−in−understanding−dynamic−change"><strong>TheRoleofLimitsinUnderstandingDynamicChange</strong></h2><p>Limitsprovidetheframeworktoquantifychangesoccurringinaninstant,whicharepivotalinunderstandingandmodelingdynamicsystems.</p><h3><strong>Example1:CalculatingInstantaneousSpeed</strong></h3><imgsrc="https://tutorchase−production.s3.eu−west−2.amazonaws.com/bca7517c−b411−4633−b4a7−d950f3a9c1df−file.png"alt="InstantaneousSpeed"style="width:700px;height:247px"width="700"height="247"><p>Imagecourtesyof<ahref="https://byjus.com/">BYJUS</a></p><p></p><p><strong>Scenario:</strong>Acartravelsinastraightlineanditspositions
attimet
isgivenbys(t) = t^2 + 2t
,wheres
isinmetersandt
isinseconds.Findthecar′sinstantaneousspeedatt = 3
seconds.</p><p></p><p><strong>Solution:</strong></p>\begin{aligned} \text{Instantaneous speed at } t = 3 & = \lim {h \rightarrow 0} \frac{s(3+h) - s(3)}{h} \\
& = \lim {h \rightarrow 0} \frac{[(3+h)^2 + 2(3+h)] - (3^2 + 2\cdot3)}{h} \\
& = \lim {h \rightarrow 0} \frac{9 + 6h + h^2 + 6 + 2h - 9 - 6}{h} \ & \\
& = \lim {h \rightarrow 0} \frac{h^2 + 8h}{h} \\
& = \lim _{h \rightarrow 0} (h + 8) \\
& = 8. \end{aligned}
<p>Thus,theinstantaneousspeedofthecaratt = 3
secondsis8
meterspersecond.</p><p></p><h3><strong>Example2:UnderstandingChangeinTemperature</strong></h3><p><strong>Scenario:</strong>ThetemperatureT
indegreesCelsiusataspecificlocationasafunctionoftimet
inhoursisgivenbyT(t) = 3t^2 - 2t + 1
.Calculatetherateoftemperaturechangeatt = 4
hours.</p><p></p><p><strong>Solution:</strong></p>\begin{aligned}
\text{Rate of temperature change at } t = 4 & = \lim _{h \rightarrow 0} \frac{T(4+h) - T(4)}{h} \\
& = \lim _{h \rightarrow 0} \frac{[3(4+h)^2 - 2(4+h) + 1] - (3\cdot4^2 - 2\cdot4 + 1)}{h} \\
& = \lim _{h \rightarrow 0} \frac{3(16 + 8h + h^2) - 2(4 + h) + 1 - (48 - 8 + 1)}{h} \\
& = \lim _{h \rightarrow 0} \frac{48 + 24h + 3h^2 - 8 - 2h + 1 - 41}{h} \\
& = \lim _{h \rightarrow 0} \frac{3h^2 + 22h}{h} \\
& = \lim _{h \rightarrow 0} (3h + 22) \\
& = 22.
\end{aligned}
<p></p><p>Therateoftemperaturechangeatt = 4
hoursis22
degreesCelsiusperhour.</p><h2id="application−of−limits−in−calculus"><strong>ApplicationofLimitsinCalculus</strong></h2><p>Theapplicationoflimitsextendsbeyondphysicalmotionandtemperaturechanges,encompassingeconomicmodels,biologicalgrowthpatterns,andchemicalreactionrates.</p><p></p><h3><strong>Example3:EconomicModel−ProfitMaximization</strong></h3><imgsrc="https://tutorchase−production.s3.eu−west−2.amazonaws.com/27fc6573−e067−4bd4−935e−8ae3b19cdbed−file.png"alt="EconomicModel−ProfitMaximization"style="width:500px;height:365px"width="500"height="365"><p>Imagecourtesyof<ahref="https://open.oregonstate.education/intermediatemicroeconomics/chapter/module−9/">OregonState.Education</a></p><p></p><p><strong>Scenario:</strong>Acompany′sprofit(P)inthousandsofdollarsismodeledbythefunctionP(x) = -2x^2 + 12x - 20
,wherex
representsthenumberofunitsproducedandsoldinthousands.Determinethenumberofunitsthatmustbeproducedandsoldtomaximizeprofit.</p><p></p><p><strong>Solution:</strong></p><p>First,wefindthederivativeofP(x)
toidentifytherateofchangeofprofitwithrespecttothenumberofunits.Themaximumprofitoccurswherethisderivativeiszero.</p><p></p>\begin{aligned} P'(x) & = \frac{d}{dx}(-2x^2 + 12x - 20) \\
& = -4x + 12. \end{aligned}
<p></p><p>SettingP'(x) = 0
tofindthecriticalpoint:</p><p></p> -4x + 12 = 0 \\ 4x = 12 \\ x = 3.
<p></p><p><strong>Conclusion:</strong>Tomaximizeprofit,thecompanymustproduceandsell3,000
units.</p><p></p><h3><strong>ApplicationinBiology:PopulationGrowthRate</strong></h3><imgsrc="https://tutorchase−production.s3.eu−west−2.amazonaws.com/92287a99−3330−4687−a4e6−b9f56b7bac91−file.png"alt="ExponentialandLogisticGrowth"style="width:600px;height:280px"width="600"height="280"><p>ConsiderapopulationofbacteriathatgrowsaccordingtothefunctionP(t) = 100e^{0.5t}
,whereP
isthepopulationsizeandt
istimeinhours.</p><p></p><p><strong>Scenario:</strong>Determinetherateofpopulationgrowthatt = 2
hours.</p><p></p><p><strong>Solution:</strong></p><p>ThegrowthrateisthederivativeofP(t)
withrespecttot
:</p><p></p>\begin{aligned} \frac{dP}{dt} & = \frac{d}{dt}(100e^{0.5t}) \\
& = 100 \cdot 0.5e^{0.5t} \\
& = 50e^{0.5t}. \end{aligned}
<p></p><p>Substitutet = 2
tofindtherateatthattime:</p><p></p>\begin{aligned} \frac{dP}{dt} \bigg|_{t=2} & = 50e^{0.5\cdot2} \\
& = 50e^1 \\
& = 50e \\
& \approx 135.9. \end{aligned}
<p></p><p><strong>Conclusion:</strong>Therateofpopulationgrowthatt = 2
hoursisapproximately135.9
bacteriaperhour.</p><p></p><h3><strong>ChemicalKinetics:RateofReaction</strong></h3><imgsrc="https://tutorchase−production.s3.eu−west−2.amazonaws.com/b293cf6d−0e5c−47c4−aed9−f30259318668−file.png"alt="ChemicalKinetics:RateofReaction"style="width:500px;height:354px"width="500"height="354"><p>Inachemicalreaction,theconcentrationofareactantA
decreasesovertimeaccordingtothefunctionA(t) = 50e^{-0.3t}
,whereA
istheconcentrationinmolesperliterandt
istimeinseconds.</p><p></p><p><strong>Scenario:</strong>FindtherateofdecreaseofA
att = 5
seconds.</p><p></p><p><strong>Solution:</strong></p><p>TherateofdecreaseisthenegativederivativeofA(t)
withrespecttot
:</p><p></p>\begin{aligned} -\frac{dA}{dt} & = -\frac{d}{dt}(50e^{-0.3t}) \\
& = 50 \cdot 0.3e^{-0.3t} \\
& = 15e^{-0.3t}. \end{aligned}
<p></p><p>Substitutingt = 5
gives:</p><p></p>\begin{aligned} -\frac{dA}{dt} \bigg|_{t=5} & = 15e^{-0.3\cdot5} \\
& = 15e^{-1.5} \\
& \approx 15 \cdot 0.2231 \\
& \approx 3.347. \end{aligned}
<p></p><p><strong>Conclusion:</strong>TherateofdecreaseintheconcentrationofA
att = 5
secondsisapproximately3.347
molesperliterpersecond.</p><h2id="practice−questions"><strong>PracticeQuestions</strong></h2><h3>Question1</h3><p>Evaluatethelimit\lim_{x \rightarrow 2} \frac{x^2 - 4}{x - 2}
.</p><p></p><h3>Question2</h3><p>Aboxwithasquarebaseandnotopistobemadefromasquarepieceofcardboardbycuttingsquaresfromeachcornerandfoldingupthesides.Ifthepieceofcardboardis12inchesoneachside,whatsizesquareshouldbecutfromeachcornertomaximizethevolumeofthebox?</p><h2id="solutions−to−practice−questions">SolutionstoPracticeQuestions</h2><h3>SolutiontoQuestion1</h3><p><strong>1.IdentifytheProblem:</strong>Substitutingx = 2
directlyintothefunctionyieldstheindeterminateform0/0
,suggestingtheneedforsimplification.</p><p><strong>2.SimplifytheExpression:</strong>Factorthenumerator:</p><p></p>\frac{x^2 - 4}{x - 2} = \frac{(x + 2)(x - 2)}{x - 2}.
<p></p><p>Canceloutthe(x - 2)
terms:</p><p></p>\frac{(x + 2)(x - 2)}{x - 2} = x + 2.
<p></p><p><strong>3.EvaluatetheLimit:</strong>Withtheexpressionsimplified,substitutex = 2
:</p><p></p>\lim_{x \rightarrow 2} (x + 2) = 4.
<p></p><p><strong>Conclusion:</strong>Thelimit\lim_{x \rightarrow 2} \frac{x^2 - 4}{x - 2} = 4
.</p><p></p><h3>SolutiontoQuestion2</h3><p><strong>1.FormulatetheProblem:</strong>Definex
asthelengthofthesideofthesquarecutfromeachcorner.Thedimensionsoftheboxwillbe12 - 2x
by12 - 2x
byx
.</p><p><strong>2.VolumeFunction:</strong>ThevolumeV
isgivenby:</p><p></p>V = x(12 - 2x)^2.
<p></p><p>Simplifythisto:</p><p></p>V = 4x^3 - 48x^2 + 144x.
<p></p><p><strong>3.FindtheCriticalPoints:</strong>DeriveV
withrespecttox
andsetto0tofindcriticalpoints:</p><p></p>\frac{dV}{dx} = 12x^2 - 96x + 144.
<p></p><p>Simplifyandsolvethequadraticequation:</p><p></p>12x^2 - 96x + 144 = 0 \Rightarrow x^2 - 8x + 12 = 0.
<p></p><p>Factoring:</p><p>(x - 6)(x - 2) = 0,
</p><p>yieldsx = 6
orx = 2
.</p><p></p><p><strong>4.DeterminetheMaximum:</strong>Bylogicalconstraints,x = 2
istheviablesolutionasx = 6
wouldleavenomaterialfortheboxsides.</p><p></p><p><strong>5.EvaluatetheVolumeat</strong>x = 2
<strong>:</strong>Substitutex = 2
intothevolumeequation:</p><p></p>V = 4(2)^3 - 48(2)^2 + 144(2) = 128 \text{ cubic inches}.$
6. Conclusion: To maximize the volume, squares of 2 inches should be cut from each corner, yielding a box with a volume of 128 cubic inches.