TutorChase logo
CIE A-Level Maths Study Notes

1.5.4 Trigonometric Identities

Trigonometric identities are crucial in mathematics, offering insights into the relationships between angles and their trigonometric functions. These identities are indispensable for solving complex problems in trigonometry, calculus, and beyond.

Fundamental Trigonometric Identities

The fundamental trigonometric identities include tan(θ)=sin(θ)cos(θ)\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} and sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1. These are derived from the unit circle and the definitions of sine and cosine functions.

1. Tangent Identity:

tanθsinθcosθ\tan \theta \equiv \frac{\sin \theta}{\cos \theta}

This identity expresses tangent in terms of sine and cosine.

Examples

Simplify tanθ \tan \theta using the tangent identity when sinθ=35\sin \theta = \frac{3}{5} and cosθ=45\cos \theta = \frac{4}{5}.

Solution:

tanθ=sinθcosθ=3545=34\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}

2. Pythagorean Identity

sin2θ+cos2θ1\sin^2 \theta + \cos^2 \theta \equiv 1

This identity reveals a fundamental relation between sine and cosine.

Examples

Prove the identity cos2(x)sin2(x)cos(x)+1cos(x)2cos(x)\frac{\cos^2(x) - \sin^2(x)}{\cos(x)} + \frac{1}{\cos(x)} \equiv 2 \cos(x).

Solution:

Using sin2(x)=1cos2(x):\sin^2(x) = 1 - \cos^2(x):

=cos2(x)(1cos2(x))cos(x)+1cos(x)= \frac{\cos^2(x) - (1 - \cos^2(x))}{\cos(x)} + \frac{1}{\cos(x)}=2cos2(x)1cos(x)+1cos(x)= \frac{2\cos^2(x) - 1}{\cos(x)} + \frac{1}{\cos(x)}=2cos2(x)cos(x)= \frac{2\cos^2(x)}{\cos(x)} =2cos(x)= 2\cos(x)cos2(x)sin2(x)cos(x)+1cos(x)2cos(x)\therefore \frac{\cos^2(x) - \sin^2(x)}{\cos(x)} + \frac{1}{\cos(x)} \equiv 2 \cos(x)

Hire a tutor

Please fill out the form and we'll find a tutor for you.

1/2
Your details
Alternatively contact us via
WhatsApp, Phone Call, or Email