TutorChase logo
AP Calculus AB/BC Study Notes

1.8.1 Understanding the Squeeze Theorem

The Squeeze Theorem, also known as the Sandwich Theorem, plays a pivotal role in calculus for determining the limits of functions that are difficult to evaluate directly. It relies on the concept of "squeezing" a function between two others to find its limit.

📚 Introduction to the Squeeze Theorem

The theorem is founded on a simple yet powerful premise: if a function f(x)f(x) is always caught between two other functions g(x)g(x) and h(x)h(x) near a certain point, and the limits of g(x)g(x) and h(x)h(x) at that point are equal, then the limit of f(x)f(x) at that point must exist and be equal to the same value. This principle is crucial for dealing with functions that oscillate or approach indeterminate forms.

Squeeze Theorem

Image courtesy of Calcworkshop

💡 Prerequisites for Applying the Squeeze Theorem

  • Functions g(x)g(x) and h(x)h(x) must bound f(x)f(x) near the point of interest.
  • Limits of g(x)g(x) and h(x)h(x) at the point must exist and be equal.

💡 Significance in Calculus

  • Dealing with Indeterminate Forms: Offers a method to evaluate limits of functions that are otherwise challenging to approach directly.
  • Understanding Oscillations: Enables the calculation of limits for functions that oscillate within a certain range.

Worked Examples

🔍 Example 1: Evaluating a Basic Limit

Consider the functions g(x)=x2),(f(x)=x2sin(1x)g(x) = x^2), (f(x) = x^2 \sin(\frac{1}{x}) for x0),x \neq 0),, and h(x)=x2h(x) = -x^2 and evaluate limx0f(x)\lim_{x \to 0} f(x).

  • Step 1: Establish the inequalities h(x)f(x)g(x)h(x) \leq f(x) \leq g(x) for all xx near 0.
  • Step 2: Calculate the limits of g(x)g(x) and h(x)h(x) as xx approaches 0.
$\begin{aligned} \lim_{x \to 0} g(x) &= \lim_{x \to 0} x^2 = 0, \\ \lim_{x \to 0} h(x) &= \lim_{x \to 0} -x^2 = 0. \end{aligned}<p></p><ul><li><strong>Step3:</strong>ApplytheSqueezeTheoremtoconcludethat<p></p><ul><li><strong>Step 3:</strong> Apply the Squeeze Theorem to conclude that \lim_{x \to 0} f(x) = 0.</li></ul><h3>🔍<strong>Example2:OscillatingFunction</strong></h3><p>Evaluate.</li></ul><h3>🔍 <strong>Example 2: Oscillating Function</strong></h3><p>Evaluate \lim_{x \to 0} x \sin(\frac{1}{x}).</p><ul><li><strong>Step1:</strong>Identifytheboundingfunctions.Here,.</p><ul><li><strong>Step 1:</strong> Identify the bounding functions. Here, g(x) = xand and h(x) = -x.</li><li><strong>Step2:</strong>Notethatforall.</li><li><strong>Step 2:</strong> Note that for all x \neq 0, -x \leq x \sin(\frac{1}{x}) \leq x.</li><li><strong>Step3:</strong>Calculatethelimitsoftheboundingfunctionsas.</li><li><strong>Step 3:</strong> Calculate the limits of the bounding functions as xapproaches0.</li></ul><p></p> approaches 0.</li></ul><p></p>\begin{aligned} \lim_{x \to 0} (-x) &= 0, \\ \lim_{x \to 0} x &= 0. \end{aligned}<p></p><ul><li><strong>Step4:</strong>BytheSqueezeTheorem,<p></p><ul><li><strong>Step 4:</strong> By the Squeeze Theorem, \lim_{x \to 0} x \sin(\frac{1}{x}) = 0.</li></ul><p>Theseexamplesillustratethetheoremsutilityinresolvinglimitsthatarenotstraightforwardtoevaluatedirectly.BysettingupappropriateboundingfunctionsandapplyingtheSqueezeTheorem,studentscantackleawiderangeofproblemsinvolvinglimits.</p><h2id="practicequestions">®<strong>PracticeQuestions</strong></h2><h3>📝<strong>Question1</strong></h3><p>Evaluatethelimit.</li></ul><p>These examples illustrate the theorem's utility in resolving limits that are not straightforward to evaluate directly. By setting up appropriate bounding functions and applying the Squeeze Theorem, students can tackle a wide range of problems involving limits.</p><h2 id="practice-questions">✏️ <strong>Practice Questions</strong></h2><h3>📝 <strong>Question 1</strong></h3><p>Evaluate the limit \lim_{x \to 0} x^2 \cos(\dfrac{1}{x}).</p><p></p><h3>📝<strong>Question2</strong></h3><p>Determinethelimit.</p><p></p><h3>📝 <strong>Question 2</strong></h3><p>Determine the limit \lim_{x \to 0} x^4 \sin(\dfrac{1}{x}).</p><p></p><h2id="solutionstopracticequestions"><strong>SolutionstoPracticeQuestions</strong></h2><h3>🧩<strong>SolutiontoQuestion1</strong></h3><p><strong>Step1:</strong>Identifythefunctiontobeevaluated:.</p><p></p><h2 id="solutions-to-practice-questions">✅ <strong>Solutions to Practice Questions</strong></h2><h3>🧩 <strong>Solution to Question 1</strong></h3><p><strong>Step 1:</strong> Identify the function to be evaluated: f(x) = x^2 \cos(\frac{1}{x})for for x \neq 0.</p><p><strong>Step2:</strong>Chooseappropriateboundingfunctions.Since.</p><p><strong>Step 2:</strong> Choose appropriate bounding functions. Since -1 \leq \cos(\frac{1}{x}) \leq 1forall for all x,wecanuse, we can use g(x) = -x^2and and h(x) = x^2asthelowerandupperbounds,respectively.</p><p><strong>Step3:</strong>Evaluatethelimitsoftheboundingfunctionsas as the lower and upper bounds, respectively.</p><p><strong>Step 3:</strong> Evaluate the limits of the bounding functions as xapproaches0.</p><p></p> approaches 0.</p><p></p>\begin{aligned} \lim_{x \to 0} g(x) &= \lim_{x \to 0} -x^2 = 0, \\ \lim_{x \to 0} h(x) &= \lim_{x \to 0} x^2 = 0. \end{aligned}<p></p><p><strong>Step4:</strong>ApplytheSqueezeTheorem.Since<p></p><p><strong>Step 4:</strong> Apply the Squeeze Theorem. Since g(x) \leq f(x) \leq h(x)andboth and both g(x)and and h(x)approach0as approach 0 as xapproaches0,bytheSqueezeTheorem, approaches 0, by the Squeeze Theorem, f(x)alsoapproaches0.</p><p></p> also approaches 0.</p><p></p>\lim_{x \to 0} x^2 \cos(\frac{1}{x}) = 0.<p></p><h3>🧩<strong>SolutiontoQuestion2</strong></h3><p><strong>Step1:</strong>Considerthefunction<p></p><h3>🧩 <strong>Solution to Question 2</strong></h3><p><strong>Step 1:</strong> Consider the function f(x) = x^4 \sin(\frac{1}{x}))for for x \neq 0.</p><p><strong>Step2:</strong>Forboundingfunctions,use.</p><p><strong>Step 2:</strong> For bounding functions, use g(x) = -x^4and and h(x) = x^4,leveragingthefactthat, leveraging the fact that -1 \leq \sin(\frac{1}{x}) \leq 1.</p><p><strong>Step3:</strong>Calculatethelimitsof.</p><p><strong>Step 3:</strong> Calculate the limits of g(x)and and h(x)as as xapproaches0.</p><p></p> approaches 0.</p><p></p>\begin{aligned} \lim_{x \to 0} g(x) &= \lim_{x \to 0} -x^4 = 0, \\ \lim_{x \to 0} h(x) &= \lim_{x \to 0} x^4 = 0. \end{aligned}<p></p><p><strong>Step4:</strong>BytheSqueezeTheorem,since<p></p><p><strong>Step 4:</strong> By the Squeeze Theorem, since g(x) \leq f(x) \leq h(x)andthelimitsof and the limits of g(x)and and h(x)as as xapproaches0areboth0,thelimitof approaches 0 are both 0, the limit of f(x)as as xapproaches0mustalsobe0.</p><p></p> approaches 0 must also be 0.</p><p></p>\lim_{x \to 0} x^4 \sin(\frac{1}{x}) = 0.$

Hire a tutor

Please fill out the form and we'll find a tutor for you.

1/2
Your details
Alternatively contact us via
WhatsApp, Phone Call, or Email