The Squeeze Theorem, also known as the Sandwich Theorem, plays a pivotal role in calculus for determining the limits of functions that are difficult to evaluate directly. It relies on the concept of "squeezing" a function between two others to find its limit.
📚 Introduction to the Squeeze Theorem
The theorem is founded on a simple yet powerful premise: if a function f(x) is always caught between two other functions g(x) and h(x) near a certain point, and the limits of g(x) and h(x) at that point are equal, then the limit of f(x) at that point must exist and be equal to the same value. This principle is crucial for dealing with functions that oscillate or approach indeterminate forms.
Image courtesy of Calcworkshop
💡 Prerequisites for Applying the Squeeze Theorem
- Functions g(x) and h(x) must bound f(x) near the point of interest.
- Limits of g(x) and h(x) at the point must exist and be equal.
💡 Significance in Calculus
- Dealing with Indeterminate Forms: Offers a method to evaluate limits of functions that are otherwise challenging to approach directly.
- Understanding Oscillations: Enables the calculation of limits for functions that oscillate within a certain range.
Worked Examples
🔍 Example 1: Evaluating a Basic Limit
Consider the functions g(x)=x2),(f(x)=x2sin(x1) for x=0),, and h(x)=−x2 and evaluate limx→0f(x).
- Step 1: Establish the inequalities h(x)≤f(x)≤g(x) for all x near 0.
- Step 2: Calculate the limits of g(x) and h(x) as x approaches 0.
$\begin{aligned} \lim_{x \to 0} g(x) &= \lim_{x \to 0} x^2 = 0, \\
\lim_{x \to 0} h(x) &= \lim_{x \to 0} -x^2 = 0. \end{aligned}
<p></p><ul><li><strong>Step3:</strong>ApplytheSqueezeTheoremtoconcludethat\lim_{x \to 0} f(x) = 0
.</li></ul><h3>🔍<strong>Example2:OscillatingFunction</strong></h3><p>Evaluate\lim_{x \to 0} x \sin(\frac{1}{x})
.</p><ul><li><strong>Step1:</strong>Identifytheboundingfunctions.Here,g(x) = x
andh(x) = -x
.</li><li><strong>Step2:</strong>Notethatforallx \neq 0, -x \leq x \sin(\frac{1}{x}) \leq x
.</li><li><strong>Step3:</strong>Calculatethelimitsoftheboundingfunctionsasx
approaches0.</li></ul><p></p>\begin{aligned} \lim_{x \to 0} (-x) &= 0, \\ \lim_{x \to 0} x &= 0. \end{aligned}
<p></p><ul><li><strong>Step4:</strong>BytheSqueezeTheorem,\lim_{x \to 0} x \sin(\frac{1}{x}) = 0
.</li></ul><p>Theseexamplesillustratethetheorem′sutilityinresolvinglimitsthatarenotstraightforwardtoevaluatedirectly.BysettingupappropriateboundingfunctionsandapplyingtheSqueezeTheorem,studentscantackleawiderangeofproblemsinvolvinglimits.</p><h2id="practice−questions">✏R◯<strong>PracticeQuestions</strong></h2><h3>📝<strong>Question1</strong></h3><p>Evaluatethelimit\lim_{x \to 0} x^2 \cos(\dfrac{1}{x})
.</p><p></p><h3>📝<strong>Question2</strong></h3><p>Determinethelimit\lim_{x \to 0} x^4 \sin(\dfrac{1}{x})
.</p><p></p><h2id="solutions−to−practice−questions">✅<strong>SolutionstoPracticeQuestions</strong></h2><h3>🧩<strong>SolutiontoQuestion1</strong></h3><p><strong>Step1:</strong>Identifythefunctiontobeevaluated:f(x) = x^2 \cos(\frac{1}{x})
forx \neq 0
.</p><p><strong>Step2:</strong>Chooseappropriateboundingfunctions.Since-1 \leq \cos(\frac{1}{x}) \leq 1
forallx
,wecanuseg(x) = -x^2
andh(x) = x^2
asthelowerandupperbounds,respectively.</p><p><strong>Step3:</strong>Evaluatethelimitsoftheboundingfunctionsasx
approaches0.</p><p></p>\begin{aligned} \lim_{x \to 0} g(x) &= \lim_{x \to 0} -x^2 = 0, \\
\lim_{x \to 0} h(x) &= \lim_{x \to 0} x^2 = 0. \end{aligned}
<p></p><p><strong>Step4:</strong>ApplytheSqueezeTheorem.Sinceg(x) \leq f(x) \leq h(x)
andbothg(x)
andh(x)
approach0asx
approaches0,bytheSqueezeTheorem,f(x)
alsoapproaches0.</p><p></p>\lim_{x \to 0} x^2 \cos(\frac{1}{x}) = 0.
<p></p><h3>🧩<strong>SolutiontoQuestion2</strong></h3><p><strong>Step1:</strong>Considerthefunctionf(x) = x^4 \sin(\frac{1}{x}))
forx \neq 0
.</p><p><strong>Step2:</strong>Forboundingfunctions,useg(x) = -x^4
andh(x) = x^4
,leveragingthefactthat-1 \leq \sin(\frac{1}{x}) \leq 1
.</p><p><strong>Step3:</strong>Calculatethelimitsofg(x)
andh(x)
asx
approaches0.</p><p></p>\begin{aligned} \lim_{x \to 0} g(x) &= \lim_{x \to 0} -x^4 = 0, \\ \lim_{x \to 0} h(x) &= \lim_{x \to 0} x^4 = 0. \end{aligned}
<p></p><p><strong>Step4:</strong>BytheSqueezeTheorem,sinceg(x) \leq f(x) \leq h(x)
andthelimitsofg(x)
andh(x)
asx
approaches0areboth0,thelimitoff(x)
asx
approaches0mustalsobe0.</p><p></p>\lim_{x \to 0} x^4 \sin(\frac{1}{x}) = 0.$