In this section, we explore the foundational theorems that enable us to compute limits involving basic arithmetic operations—sums, differences, products, and quotients—as well as compositions of functions. These theorems are instrumental in simplifying complex limit problems into more manageable parts. We will delve into each theorem with examples to demonstrate their application.
The Limit Theorems
The limit theorems for basic operations are crucial for breaking down complex expressions into simpler parts. Below, we outline these theorems:
If limx→af(x)=L and limx→ag(x)=M, then limx→a[f(x)+g(x)]=L+M.
If limx→af(x)=L and limx→ag(x)=M, then limx→a[f(x)−g(x)]=L−M.
If limx→af(x)=L and limx→ag(x)=M, then limx→a[f(x)⋅g(x)]=L⋅M.
If limx→af(x)=L, limx→ag(x)=M, and M=0, then limx→ag(x)f(x)=ML.
Composition of Functions Theorem:
If limx→ag(x)=L and limy→Lf(y)=M, then limx→af(g(x))=M.
Example 1: Using the Sum and Difference Theorems
Problem Statement
Compute the limit: limx→2(3x2+2x−4).
Solution:
$\begin{aligned} &\lim{x \to 2} (3x^2 + 2x - 4) \\
=& \lim{x \to 2} 3x^2 + \lim{x \to 2} 2x - \lim{x \to 2} 4 \\
=& 3(\lim{x \to 2} x^2) + 2(\lim{x \to 2} x) - 4 \\
=& 3(2^2) + 2(2) - 4 \\
=& 12 + 4 - 4 \\
=& 12 \end{aligned}
<p></p><h2id="example−2−using−the−product−theorem"><strong>Example2:UsingtheProductTheorem</strong></h2><h3><strong>ProblemStatement</strong></h3><p>Evaluatethelimit:\lim_{x \to -1} x^2(x+3)
.</p><h3><strong>Solution</strong></h3><p></p>\begin{aligned} &\lim{x \to -1} x^2(x+3) \\ =& \left(\lim{x \to -1} x^2\right) \cdot \left(\lim_{x \to -1} (x+3)\right) \\ =& (-1)^2 \cdot (-1+3) \\ =& 1 \cdot 2 \\ =& 2 \end{aligned}
<h2id="example−3−using−the−quotient−theorem"><strong>Example3:UsingtheQuotientTheorem</strong></h2><h3><strong>ProblemStatement</strong></h3><p>Findthelimit:\lim_{x \to 3} \dfrac{x^2 - 9}{x - 3}
.</p><h3><strong>Solution:</strong></h3><p></p>\begin{aligned} &\lim{x \to 3} \frac{x^2 - 9}{x - 3} \\ =& \lim{x \to 3} \frac{(x+3)(x-3)}{x-3} \\ =& \lim_{x \to 3} (x+3) \\ =& 3+3 \\ =& 6 \end{aligned}
<h2id="example−4−applying−limit−theorems−to−composite−functions"><strong>Example4:ApplyingLimitTheoremstoCompositeFunctions</strong></h2><h3><strong>ProblemStatement</strong></h3><p>Determinethelimit:\lim_{x \to 2} \sqrt{x^2 + 3}
</p><h3><strong>Solution:</strong></h3><p></p>\begin{aligned} &\lim{x \to 2} \sqrt{x^2 + 3} \\ =& \sqrt{\lim{x \to 2} (x^2 + 3)} \\ =& \sqrt{2^2 + 3} \\ =& \sqrt{4 + 3} \\ =& \sqrt{7} \ \end{aligned}
<p></p><p>ThisexampleillustrateshowtoapplytheCompositionofFunctionsTheoremtoevaluatethelimitofacompositefunction,\sqrt{x^2 + 3}
,byfirstfindingthelimitoftheinsidefunction,x^2 + 3
,asx
approaches2,andthentakingthesquarerootoftheresult,demonstratingthetheorem′sutilityinsimplifyingtheprocessofdetermininglimitsforcompositefunctions.</p><h2id="practice−questions"><strong>PracticeQuestions</strong></h2><p>HerearepracticequestionssimilartothoseyoumightencounterontheAPCalculusexam.Trysolvingthembeforelookingatthedetailedsolutionsprovidedtotestyourunderstandingofusinglimittheoremsforbasicoperations.</p><h3><strong>Question1</strong></h3><p>Evaluatethelimit:\lim_{x \to -2} \dfrac{x^3 + 8}{x + 2}
</p><h3><strong>Question2</strong></h3><p>Determinethelimit:\lim_{x \to 4} \dfrac{2x^2 - 8x}{x - 4}
</p><h3><strong>Question3</strong></h3><p>Computethelimit:\lim_{x \to 0} \dfrac{\sin(x)}{x}
</p><h2id="solutions−to−practice−questions"><strong>SolutionstoPracticeQuestions</strong></h2><h3><strong>SolutiontoQuestion1</strong></h3><p>First,noticethenumeratorisasumofcubes:</p><p></p>\begin{aligned} &\lim{x \to -2} \frac{x^3 + 8}{x + 2} \\ =& \lim{x \to -2} \frac{(x + 2)(x^2 - 2x + 4)}{x + 2} \\ =& \lim_{x \to -2} (x^2 - 2x + 4) \\ =& (-2)^2 - 2(-2) + 4 \\ =& 4 + 4 + 4 \\ =& 12 \end{aligned}
<p></p><h3><strong>SolutiontoQuestion2</strong></h3><p>Factoroutthecommonterminthenumerator:</p>\begin{aligned} &\lim{x \to 4} \frac{2x^2 - 8x}{x - 4} \\ =& \lim{x \to 4} \frac{2x(x - 4)}{x - 4} \\ =& \lim_{x \to 4} 2x \\ =& 2(4) \\ =& 8 \end{aligned}
<p></p><h3><strong>SolutiontoQuestion3</strong></h3><p>Thislimitisafundamentaltrigonometriclimit:</p>\lim_{x \to 0} \frac{\sin(x)}{x} = 1$
This result is often proven using the Squeeze Theorem or by geometric arguments in calculus textbooks. It's a critical limit that underlies the derivative of the sine function.